[image: image11.png]Curtin

University of Technology

Department of Electrical and Computer Engineering

iView: A Classroom Aid for the Visually Impaired

by

Phu Khoa Nguyen

A thesis submitted for the degree of

Bachelor of Engineering in Computer Systems

Department of Electrical and Computer Engineering

Synopsis

The Apple iSight is the web camera created by Apple. Although there is already software created to capture the audio and video from the iSight, this software is targeted to users who have normal vision. The software resulting from this project aims to enhance the video captured from the camera such that the resulting video can be viewed by those with visual impairment. This includes being able to convert the picture into a two colour scheme, one light colour and one dark colour for high contrast and easier viewing; being able to change the contrast; and being able to zoom in and out. All this is displayed to screen in a GUI (Graphical User Interface) which is very similar to most other media players, where the user can either record what is being captured, or play back what has been saved previously.

Professor Syed Islam

Head of Department

Department of Electrical and Computer Engineering

Curtin University of Technology

Western Australia

Kent Street

Bentley, WA 6102

November 5, 2004

Dear Professor Islam,

I, Phu Nguyen, offer this thesis entitled “iView: A Classroom Aid for the Visually Impaired”, as partially satisfying the requirements for the degree of Bachelor of Engineering in Computer Systems Engineering, as part of a double degree with the degree of Bachelor of Science in Computer Science.

Yours Sincerely,

Phu Nguyen

Acknowledgements

I would like to thank Iain Murray for supervising me during this project. I would especially like to thank Wilson Yong for partnering me in this project.

Table of Contents

11
Introduction

1.1
Introduction
1
1.2
Objectives
2
1.3
Thesis Overview
3
2
QuickTime Application Development
4
2.1
Objective-C
4
2.1.1
Dynamic Binding
4
2.1.2
Message Passing/ Method Calling
5
2.1.3
Memory Management
5
2.1.4
Method Declarations
7
2.1.5
Instance variables
7
2.1.6
Method Implementation
7
2.2
Cocoa
8
2.3
Model-View-Controller (MVC)
9
2.3.1
Model objects
10
2.3.2
View Objects
11
2.3.3
Controller Objects
11
2.4
QuickTime
11
2.5
Interface Builder
12
2.6
Project Builder
12
3
Analysis
13
3.1
Target Audience/Prospective Users
13
3.2
Hardware
13
3.3
Software
13
4
Design
14
4.1
Functional Requirements
14
4.1.1
Open Movie File
14
4.1.2
Save As
14
4.1.3
Close Movie File
15
4.1.4
Exit
15
4.1.5
Record
16
4.1.6
Pause Recording
16
4.1.7
Stop Recording
16
4.1.8
Zoom
17
4.1.9
Set Selection Start
17
4.1.10
Set Selection End
17
4.1.11
Delete segment
17
4.1.12
Crop segment
18
4.1.13
Play
19
4.1.14
Pause Playback
19
4.1.15
Stop Playback
19
4.1.16
Seek To
20
4.1.17
Contrast
20
4.1.18
Colour Choice
20
4.2
GUI Layout
21
5
Implementation of the iView
23
5.1
Implementation Development Platform
23
5.2
Screen Layout
24
5.2.1
Record Mode
24
5.2.2
Playback Mode
25
5.3
Contrast Function
25
5.3.1
Contrast Settings Introduction
25
5.3.2
Contrast Algorithm
26
5.3.3
Contrast Settings Examples
29
5.4
Implementation Issues
31
5.4.1
Dual Screen Views
31
5.4.2
Video Compression
32
5.4.2.1
Video Compression Algorithms
32
5.4.2.2
Video Compression Problems
33
5.4.3
Threshold limits
35
6
Conclusion
36
6.1
Objective Achievements
36
6.2
Future Direction / Improvements
37
7
References
38
8
Appendix – Source Code
40
8.1
MyMovieText.h
40
8.2
MyMovieText.m
41
8.3
MyObject.h
48
8.4
MyObject.m
51
8.5
MyQuickDrawView.h
63
8.6
MyQuickDrawView.m
65
8.7
MyVideo.h
78
8.8
MyVideo.m
79
8.9
UserText.h
87
8.10
UserText.m
88

Table of Figures
10Figure 1 : Model-View-Controller paradigm

Figure 2 : Basic layout for the GUI design
21
Figure 3 : Screenshot of iView in record mode
24
Figure 4 : Screenshot of application in playback mode
25
Figure 5 : Screenshot of the contrast settings box
26
Figure 6 : Contrast function algorithm
27
Figure 7 : Video with contrast enabled, light colour is white, dark colour is black, and threshold is 20
29
Figure 8 : Video with contrast enabled, light colour is white, dark colour is black, and threshold is 30
29
Figure 9 : Video with contrast enabled, light colour is white, dark colour is black, and threshold is 40
30
Figure 10 : Video with contrast enabled, light colour is white, dark colour is black, and threshold is 50
30
Figure 11 : Video with contrast enabled, light colour is white, dark colour is black, and threshold is 60
31

1 Introduction

1.1 Introduction

There are many video capturing tools out in the marketplace but they all assume one thing – the person has full ability of all their senses. The objective of this project is to produce a video capturing/viewing tool which caters for those with less than perfect vision. The users at which the project is targeting usually cannot make out a lot of detail due to colour gradients. In order to overcome this, the project will provide the user the ability to convert the video feed from the iSight into video which consists of two colours selected by the user. This choice allows the user to pick two colours which to their eyes have a high contrast. Not all users have the same perception of various colours as others, so may be more perceptive to a particular range of colours than another. This allows the user to tailor this particular aspect of the program to accommodate for their eyesight.

Converting the video to this two-tone version has another advantage. A video with only two different colours is highly compressible, which means it will take much less space than the normal video. This high amount of compression is due to the nature of the compression, in particular the spatial aspect of compression. If the user only needs these two colours, then it is highly advantageous to use this contrast function as it will take up much less space.

Another property of the video which will allow a high amount of compression is due to the nature of use of the iView application. The iView will mostly likely be used in the realms of a classroom setting. This means there is likely to be little movement in the video. Video with little movement means that compression algorithms which try to compress according temporal characteristics (changes between frames) of the video will be rewarded with high compression, as little is likely to change between frames.

The video and possibly a text channel will be need to be stored to disk. The tools which facilitate this are provided by the Apple QuickTime Application Programming Interface (API). All of this is to be offered to the user in a simple GUI which contains all the basic functions needed to record, provide visual enhancements to the video, and allow playback of video which has been stored to disk.

1.2 Objectives

The main objectives of this project are to create an application which achieves the following:

· Captures video data from the Apple iSight

· Processes the video into a two-tone colour scheme in order to achieve a higher visibility for the visually impaired

· Allow the user to view this in real-time

· Allow the user to input text captions while the video is being captured

· Allow the video and text to be saved to a file for later viewing

· Allow a video file to be opened

· Allow playback features in the movie file

· Allow editing of the movie file

1.3 Thesis Overview

Chapter 2 of this thesis discusses the various software technologies and packages used to develop the iView application.

Chapter 3 of this thesis goes through the original analysis of the project. In particular, the target audience is determined; the software requirements are determined; and the hardware requirements are determined.

Chapter 4 of this thesis describes the design of the project. The functional requirements are specified, and the GUI layout is described.

Chapter 5 of this thesis discusses the project implementation. The development platform is defined; the layout of the GUI in both record mode and playback mode is described; the contrast function is explained; and the implementation issues that arose are discussed.

Chapter 6 concludes the thesis by determining if objectives have been met, and outlining future directions the project could take.

2 QuickTime Application Development

2.1 Objective-C

Objective-C is “an object-oriented programming language based on standard C, and provides a foundation for learning about the Mac OS X Objective-C application development framework – Cocoa”.

(http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/1objc_intro/chapter_1_section_1.html)

This link to the C language means that a program may be designed overall as an object-oriented program, but parts of it may be implemented using a procedural style synonymous with C. This allows greater flexibility during programming as separate classes are not always needed when implementing a function – a C structure combined with some functions which access and modify that structure may suffice. If Java (a pure objective oriented language) is used instead of Objective-C, this is not possible.

2.1.1 Dynamic Binding

Objective-C uses dynamic binding. This means an object can be created without a type (this generic type being specified as ‘id’ in Objective-C) and can be initialised and allocated when it is to be used as an instance of any class it is being initialised to. For example:

id anObject;

anObject = [[AnyClass alloc] init];

In this example, the instance variable (object) is named anObject. It has a type of id, which means it may be initialised as an instance object of any class when it is to be used. On initialisation and allocation, anObject is now an instance object with the type of AnyClass. By providing this functionality, the object is not locked into a particular type until run-time, which is especially useful in GUI applications.

2.1.2 Message Passing/ Method Calling

All method calls of Objective-C methods conform to one of four general forms. These are:

[anObject methodName:parameter p1];

[anObject methodName:p1];

[anObject methodName:parameter1 p1: parameter2 p2 : parameter3 p3];

[anObject methodName:p1 :p2 :p3];

The first two forms are used when calling methods which have only a single parameter whereas the third and fourth forms are used when the method call needs multiple parameters. The last two forms show method calls which specify three parameters as their arguments.

As shown in the first and third form, when calling methods, the names of the parameter labels may be explicitly defined in the method call in order to clarify to the programmer when coding or when reviewing the code at a later date what each parameter actually means in the method call. The labels may be omitted but this reduces readability and comprehension of the code at a later date.

2.1.3 Memory Management

The memory management system in Objective-C uses a system called reference counting. A reference count is attached to each object on creation and initialisation. This reference count is initialised to 1. Every time an entity wishes to gain ownership of the object, this reference count must be incremented. When that entity no longer needs ownership of that object, the reference count of that object is decremented. Once all entities have finished with that object, the reference count of that particular object should have reached zero if all the increments and decrements of the reference count have been performed properly. Once the reference count reaches zero, the object is then de-allocated from memory, thus freeing the memory at which the object was residing. This reference counting technique ensures that objects can be shared safely between other objects by making sure the object is only de-allocated when no other object is currently using the current object. The increment of the reference count is implemented in Objective-C via the retain method. The decrement of the reference count is implemented via the release method. Retain is called when an object wishes to use another object, and release is called when the object no longer needs the other object. For example:

[copyClassObject copyFunction : junkObject]
-(void)copyFunction : (id)anObject

{

 NSObject *copiedObject;

 [retain anObject];

 copiedObject = [anObject copy];

 [anObject release];

}

In this example, the first line is a call to the function copyFunction: which passes in an object. In the function itself, if anObject was not retained then it is not guaranteed that anObject will still exist when it gets to the actual copy command because anObject could concurrently be used by another function somewhere else where it may have been destroyed. In order to prevent this destruction from happening until all uses of anObject have been fulfilled, the retain command is used to increment the reference count. When anObject is no longer needed in this particular scope, the release command may be used to tell the program that it is no longer needed by this particular object, and may be de-allocated if no other objects are currently using it.

2.1.4 Method Declarations

Method declarations and all class instance variables reside in the .h header file along with constant definitions and import statements of libraries and user classes used by that particular class.

All the constant definitions and import statements reside near the top of the header file. Below this are the class instance variables and method declarations. These must be placed between the keywords @interface and @end. The method declarations should have the corresponding implementation of the method in the .m file.

2.1.5 Instance variables

As with any object oriented language, Objective-C makes use of instance variables – otherwise known as objects. These are an instantiation of classes, as classes themselves are just ‘templates’ of an implementation which encapsulate data and functions used to manipulate that data.

2.1.6 Method Implementation
The class and instance methods of a class must be enclosed by the keywords @implementation and @end. These method implementations reside in the .m implementation file. An example of this is as follows:

@implementation MyClass

-(int)doSomethingWith : anotherObject

{

 return [anotherObject multiply:3 by:4];

}

+(void)init

{

 do initialisation

}

@end

Class methods are denoted by the ‘+‘ character at the start of the method header while instance methods are denoted by the ‘-‘ character at the start of the method header. Class methods are methods which are called without instantiating the class they belong to. They are called using the following syntax:

[MyClass init];
Instance methods are methods which can only be called by an instance variable of that particular class. They are called using the following syntax:

MyClass *myClassObject;

[myClassObject doSomethingWith:anotherObject];

2.2 Cocoa

Cocoa is the development framework which Apple developed to allow Objective-C to be used to ease the process of developing applications which make use of GUIs. Cocoa achieves this by developing classes which produce a more abstract view of GUI objects where all the methods needed by the class are encapsulated within that class. Since the classes are the crux of object-orientation, they must implement inheritance via sub-classing. Sub-classing is extremely important in the development of Cocoa classes as the majority of classes provided by Cocoa are subclasses of another class. For example, NSObject is the parent class from which almost all classes inherit from. It provides methods which are available to all classes, and instance objects. Examples of these methods are init, alloc, release, and retain which are all functions pertaining to the allocation and de-allocation of objects. A functionality of a class can be extended by sub-classing it. An example of this is the MyQuickDrawView class, which was created for this project. It inherits from the NSQuickDrawView class and adds more functionality – in other words it extends the class.
2.3 Model-View-Controller (MVC)

Cocoa uses the Model-View-Controller (MVC) paradigm as its highest level of abstraction. Objective-C is the language of choice when implementing Cocoa. The MVC paradigm consists of three types of objects: model objects, view objects, and controller objects. These three levels of abstraction allow code to be very modular, which makes it very easy to add, remove, and modify functionality. It also allows a cleaner and better understanding of the code because the interface the user sees is completely separate to how the functionality of the interface is actually achieved.

[image: image1.png]

Figure 1 : Model-View-Controller paradigm

(http://developer.apple.com/documentation/Cocoa/Conceptual/ObjCTutorial/chapter02/chapter_2_section_3.html - //apple_ref/doc/uid/20002050/TPXREF104)

As shown above in Figure 1, the view layer and model layer do not act with each other directly. In order to communicate with each other, they must send messages through to each other via the controller. Each of the layers has a very distinct purpose. These are outlined below.

2.3.1 Model objects

Model objects represent “knowledge and expertise”. They hold various forms of data, and contain the functions which are used to manipulate this data. They are what would be considered a standard object-oriented object. Since the structures which hold the data are not visible to the user, the programmer can implement them in any particular form which is appropriate to the task. This may change as time on the software project progresses but to the user, it appears as nothing has changed even though underlying structures have changed. This makes them very flexible. (http://developer.apple.com/documentation/Cocoa/Conceptual/ObjCTutorial/chapter02/chapter_2_section_3.html#//apple_ref/doc/uid/20002050/TPXREF104)

2.3.2 View Objects

View objects represent “something visible on the user interface”. Examples of view objects are windows, text fields, scroll views, buttons, and browsers. They do not need to know about the data they display and do not need to modify it in any way; all they do is display it which makes them very independent from the data, thus making view objects highly re-usable.

2.3.3 Controller Objects

Controller objects “communicate data back and forth between the model objects and the view objects”. They allow data such as function calls, input parameters, returned output, structures, and pointers to be passed between the two layers of abstraction. Controller objects are extremely specific to an application as they have to deal with the specifics of message passing between the layers; this keeps their ability to be re-used quite low as they are generally tailored towards the program they belong to.

2.4 QuickTime

QuickTime was developed by Apple for the production and playback of video and audio on Windows and Macintosh systems. Earlier versions of the QuickTime API (Application Programming Interface which contains all the QuickTime functions available for application development of QuickTime products) used Pascal and C as their language of choice. These libraries of functions can still be used, but later versions of QuickTime have implemented these libraries as object-oriented classes which are accessed via frameworks. These can be used by object-oriented languages such as Java and Objective-C to make it a lot easier to program.

2.5 Interface Builder

Interface Builder is the Apple developed application which allows the program developer to easily incorporate pre-defined GUI widgets into their application. These widgets are the view objects in the MVC paradigm. Widgets are placed into the application window via a drag-drop interface. They allow the settings of various initialisation criteria in the box itself, such as whether the widget is enabled or disabled on startup. The links between the widget and the controller consists of either actions, or outlets. Actions allow message to be sent from the widget to the model object, via the controller. The action message tells the controller that the widget has been activated. An example of an action message is if a button has been pressed. The controller then sends the message that a widget, which is linked to that particular action, has sent a message which activates that particular action. Outlets are links allowing message to be sent from the model object to the widget via the controller. An example of an outlet would be the link which allows the string of a text field widget to be set by the model object.

2.6 Project Builder

Project Builder is the Apple developed Integrated Development Environment (IDE) allowing the programmer to edit source code, compile, debug, and link to the Interface Builder all within the same application.

3 Analysis

3.1 Target Audience/Prospective Users

The people who are most likely to use this application are as follows:

· Visually impaired students

· Staff looking after these students

· People attending a conference or meeting with a visual impairment

3.2 Hardware

To develop and use the iView application, this project needs the following hardware equipment:

· Apple iSight video camera

· Apple computer

3.3 Software

To develop the iView application, this project needs the following software:

· Apple Interface Builder

· Apple Project Builder

· Objective-C programming language

· Apple QuickTime library functions

4 Design

4.1 Functional Requirements

4.1.1 Open Movie File

Input:
filename of file to open

Output:
movie object file which can be manipulated

Processing:
opens the movie file from disk and creates a movie object from the file which can be manipulated by the user via playback functions and editing functions

Error:
filename entered does not exist or filename entered does not consists of a valid QuickTime movie file

Notes:
‘open movie’ is only available while in playback mode, not recording mode. Once a movie is opened, it must be closed before another one is opened

4.1.2 Save As

Input:
filename of file to save to

Output:
saved file

Processing:
gets the name of the output file entered by the user. If the filename already exists, the user is asked if they want to replace the existing file with the new file. The file to be written consists of the current movie which resides in memory while in playback mode. This may be the original movie file which was selected to be open using the ‘open movie’ command or may be the edited movie file, which the user has editing using the selection and deletion commands

Error:
file is read-only so it can not be written to

4.1.3 Close Movie File

Input:
filename which was opened successfully using the ‘open movie’ command

Output:
none

Processing:
closes the file in the playback window. Command is not available while in recording mode. Playback can no longer occur as the movie object is no longer in memory

Error:
none

Notes:
‘close movie file’ is only available while in playback mode and only while a movie has been opened and has not been closed yet. The movie function is only available while the currently opened movie is currently paused or stopped. It is not available during actual playback

4.1.4 Exit

Input:
none

Output:
none

Processing:
if the program is in playback mode, the opened movie file is closed and the program exits. If the program is in record mode, the recording is stopped. The saving has already been taken care of because

Error:
file is not written to disk if the program is in record mode and it is actually recording (i.e. it is not paused or stopped)

4.1.5 Record

Input:
feed from camera, filename of movie to record to

Output:
movie file on disk

Processing:
records what it receives from the camera to the filename specified by the user. If the filename already exists, the user is asked if they want to overwrite it

Error:
out of space, file selected to record to is read only

4.1.6 Pause Recording

Input:
movie file from disk

Output:
none

Processing:
temporarily stop recording the camera feed and user text input to disk

Error:
none

4.1.7 Stop Recording

Input:
movie file from disk

Output:
updated movie file

Processing:
stops the recording of the camera feed and user text input, and updates the movie file on disk with the appropriate updates. The file is then closed

Error:
none

4.1.8 Zoom

Input:
zoom value, playback mode

Output:
record preview or playback movie zoomed on screen according to user zoom selection

Processing:
takes the playback mode and decides whether it is recording or playing a movie. It resizes the record preview or the playback window accordingly, and adjusts the window to fit

Error:
none

4.1.9 Set Selection Start

Input:
start time, movie object

Output:
none

Processing:
sets the start time of the segment to be edited

Error:
start time may be after end time

4.1.10 Set Selection End

Input:
end time, movie object

Output:
none

Processing:
sets the end time of the segment to be edited. May have to calculate the duration between the start and end times

Error:

end time may be before start time

4.1.11 Delete segment

Input:
selection start time, selection end time, movie object

Output:
updated movie object

Processing:
deletes the selected portion of the movie and then concatenates the split portions which resulted from the delete back into a single movie file

Error:
none

Notes:
If the selection start and end times are equal, nothing is deleted. The start and end times are initialised to the start of the movie and the length of the movie respectively. If the either the start or end selection is specified without explicitly specifying the other, the other selection which the user did not specify is default to the limits mentioned

4.1.12 Crop segment

Input:
selection start time, selection end time, movie object

Output:
updated movie object

Processing:
removes the portion of the movie before the selection start time and after the selection end time specified by the user. It leaves the selection between the start and end selection times as the remaining movie

Error:
none

Notes:
If the start time has not been set by the user or they set it to the beginning of the movie, there is not section before the start time so the cropping just ignores the beginning section. The same goes for the end time. If the selection end time is not set by the user or if the user sets it to the end of the file, then the cropping ignores the end section. If the whole movie is selected, the cropping does nothing as there is nothing to crop

4.1.13 Play

Input:
filename, playback position in file

Output:
playback of movie to screen

Processing:
starts playing the movie to screen starting from the specified playback position

Error:
none

4.1.14 Pause Playback

Input:
movie object

Output:
pause movie output on screen

Processing:
pauses the movie at the current spot. Records this position in the movie in order to resume playback later on

Error:
none

4.1.15 Stop Playback

Input:
movie object

Output:
stops movie output on screen

Processing:
stops the movie at the current spot and resets the position in the movie to the beginning

Error:
none

4.1.16 Seek To

Input:
movie object, position in file

Output:
updates position display and movie display output if currently playing

Processing:
moves the current position of the movie to the specified position and starts playback immediately if it was previously playing, or just sets that position when resumption of playback occurs

Error:
none

4.1.17 Contrast

Input:
threshold value, video feed, contrast colours

Output:
recording preview with video processed into the two colours selected by the user

Processing:
video is processed into two colours and displayed to the preview screen. The threshold determines whether to convert a pixel to the first colour, or the second colour. This thresholding is based on how ‘light’ a particular pixel is

Error:
none

4.1.18 Colour Choice

Input:
input colour 1, input colour 2

Output:
none

Processing:
allows the user to select the two colours which will be used to create a two-tone colour video from the camera feed

Error:
none

4.2 GUI Layout

[image: image2.png]A video cutpt

Figure 2 : Basic layout for the GUI design

The basic layout for the GUI is shown above, in Figure 2. This sort of layout is typical of most multimedia players, with the largest proportion of the screen going towards showing the video. The rest of the screen is made up of all the buttons which are most useful in controlling the playback and recording of the video. It is best to try and keep the screen uncluttered so the ‘set select start’ and ‘set select end’ buttons could be moved to the menu rather than be implemented as buttons on the GUI, but it is dependent on the pattern of usage of the program by the user. If the user does a lot of editing, these editing selection buttons would make it a lot easier to access these frequently used functions rather than if they were only in the menu.

5 Implementation of the iView

5.1 Implementation Development Platform

The iView was developed using the following software tools:

· Apple Interface Builder

· Apple Project Builder

· Objective-C programming language

· Apple QuickTime library functions

· Apple QuickTime frameworks

These software tools were run using the Mac OS X 10.2 operating system. As such, the iView application was only tested under OS X 10.2.

The hardware used in the implementation of the iView consists of the following:

· Apple iSight video camera

· Apple eMac computer

5.2 Screen Layout

5.2.1 Record Mode

 [image: image3.png]iview

O Playback mode
© Record mode

Figure 3 : Screenshot of iView in record mode

Figure 3
, as shown above, shows the layout of the iView GUI when it is in record mode. The applications starts up in record mode and can be changed from playback mode to record mode by toggling the radio buttons in the bottom left hand corner. When compared with the design layout, as shown in Figure 2, the main difference is the use of two screens: one for displaying the video while it is being recorded; and the other for displaying the playback of a pre-recorded video. This implementation issue is discussed in section 5.4.1 titled ‘Dual Screen Views’

5.2.2 Playback Mode

[image: image4.png]iview

RWMercer R W.Mercer

fps: 30.3 ——— ips: 6.0] ———

00:00:01.316

° nim @ L 1

@ Playback mode
O Record mode

Figure 4 : Screenshot of application in playback mode

Figure 4, as shown above, shows what the application looks like in playback mode.

5.3 Contrast Function
5.3.1 Contrast Settings Introduction

The contrast function allows the user to produce a two-tone video from the video feed coming in from the iSight. The user can select whether to turn this function on or not. If they wish to turn it on, they have control over which two colours are chosen and whereabouts in the light spectrum it divides up the two colours. A screenshot of the program is shown below in Figure 5.

[image: image5.png]Contrast

) Contrast enable

Light Contrast Colour

Dark Contrast Colour

Threshold

(Apply)

pply

50.00

(Close)

Figure 5 : Screenshot of the contrast settings box
The contrast settings box, as seen above in Figure 5, shows all the settings which are available to control the contrast of the video. The check box ‘Contrast enable’ allows the user to turn the contrast on and off. The two ‘colour wells’ allow the user to select the two different colours needed when applying the contrast function. The threshold field allows the user to set the threshold value at which the pixel is determined to be light or dark. The threshold values taken from the user are limited to between 0 and 100. The threshold is determined by comparing the luminance (the intensity of light in a colour) of a pixel to the threshold.

5.3.2 Contrast Algorithm

The algorithm of the threshold function is shown below in
Figure 6
:

Define the luminance coefficients as:
 Red luminance coefficient = kLumCoeffR
 Green luminance coefficient = kLumCoeffG

 Blue luminance coefficient = kLumCoeffB

The respective values for these coefficients are:

 0.30078125

 0.58984375

 0.109375

These coefficients the same ones used by Apple in their QuickDraw 3D Utilities (http://developer.apple.com/documentation/QuickTime/QD3D/qd3dcolorutil.7.htm)

These coefficients add up to 1

Floating point arithmetic is a lot slower and inefficient compared

to integer arithmetic. If we scale these values by 256 then we can

just bitwise shift right the answer by 8 bits at the end to get the

same result

luminance = (kLumCoeffR * R) + (kLumCoeffG * G) + (kLumCoeffB * B)

 = (kLumCoeffR*256*R + kLumCoeffG*256*G + kLumCoeffB*256*B) / 256

 = (77 * R + 151 * G + 28 * B) >> 8

The max values for the RGB values is 256

This means max luminance is 256

luminance = (77 * R + 151 * G + 28 * B) >> 8;

// If luminance is darker than threshold, set pixel to dark colour

// Else set pixel to light colour

 if (luminance < gThreshold)

 {

 *pixelPtr = (darkARGB[0] << 24) | (darkARGB[1] << 16)

 | (darkARGB[2] << 8) | (darkARGB[3] << 0);

 }

 else

 {

 *pixelPtr = (lightARGB[0] << 24) | (lightARGB[1] << 16)

 | (lightARGB[2] << 8) | (lightARGB[3] << 0);

 }
The arrays lightARGB[4] and darkARGB[4] contain the colours specified by the user in the contrast settings box. They are broken down into their alpha, red, green, and blue components
Figure 6 : Contrast function algorithm

This contrast function is applied to each frame as soon as it is taken from the camera. Since it is applied to each frame, the function must be highly optimised. The obvious optimisation is through the use of integers instead of floating point numbers. Integer operations are much faster than floating point operations so all the calculations are converted to integer calculations, as shown in the algorithm in
Figure 6
. Once converted to integers, they can be nicely bit-shifted instead of using multiplication, as the multiplication factor is 256 = 2^8 which is the same as bit-shifting the numbers left 8 time.

Another improvement is made when reading the pixels from the frame and writing the new value pixels back. Instead of calling functions to read and write each pixel, the pixels can be accessed directly because each frame is actually a 2D map of the pixels, represented by rows and columns. This means the address of a pixel can easily be calculated and accessed directly, which speeds up the function by a considerable amount because this method entails no overhead which is associated with function calls.
5.3.3 Contrast Settings Examples

[image: image6.png]N Nercer

fps: 10.0 A —————t

Figure 7 : Video with contrast enabled, light colour is white, dark colour is black, and threshold is 20

[image: image7.png]

Figure 8 : Video with contrast enabled, light colour is white, dark colour is black, and threshold is 30

[image: image8.png]

Figure 9 : Video with contrast enabled, light colour is white, dark colour is black, and threshold is 40
[image: image9.png]

Figure 10 : Video with contrast enabled, light colour is white, dark colour is black, and threshold is 50

[image: image10.png]

Figure 11 : Video with contrast enabled, light colour is white, dark colour is black, and threshold is 60

Figure 7 to Figure 11 are shown above. They all show the contrast enabled, with the light colour being white, and the dark colour being black. The only difference between them is the threshold values. They are starting from a value of 20 in Figure 7 to a value of 60 in Figure 11, increasing by an interval of 10 each time. As can be seen when comparing all of them, a threshold value of between 30 and 40 (Figure 8 and Figure 9) provide the best results in terms of being able to distinguish things. Values outside of this range produce unsuitable results.

5.4 Implementation Issues

5.4.1 Dual Screen Views

The reason why there are two screens instead of one is there are no functions in Mac OS X 10.2 which hide a screen when it is not in use. The function, which has only become available since OS X 10.3, has the following function header:

- (void)setHidden:(BOOL)flag

This header is defined in the class NSView, of which NSQuickDrawView (the view used to display the recording video) and NSMovieView (the view used for the playback of video) are subclasses. If this had been available in OS X 10.2, then switching between the views when the playback/record mode could have been achieved by the following code:

if (playbackMode == YES) // it is in playback mode

{

 [movieView setHidden:NO]; // show the playback view

 [view setHidden:YES]; // hide the record view

}

else // it is in record mode

{

 [movieView setHidden:YES]; // hide the playback view

 [view setHidden:NO]; // show the record view

}

5.4.2 Video Compression

5.4.2.1 Video Compression Algorithms

The video compression scheme used in this project is the JPEG compression algorithm. This is specified in QuickTime using the identifier kJPEGCodec. The JPEG algorithm operates on a frame-per-frame basis meaning it only provides spatial compression (based on single image attributes). This means rather than being a video compression algorithm, it is an image compression algorithm. Proper video codecs need to take into account the temporal aspect of compression (how a frame relates to the frames surrounding it, in particular how the frames surrounding it differ or are similar to it) in order to provide increased compression, rather than just relying on spatial compression.

One example of a compression codec which takes into account both spatial and temporal characteristics of a video file is the Cinepak codec. Cinepak is a codec which was developed by Apple in the early nineties to compress video for use on a computer. It was designed to be run on hardware such as the Intel 386 and the Macintosh 030. (http://www.siggraph.org/education/materials/HyperGraph/video/codecs/Cinepak.html)

5.4.2.2 Video Compression Problems

The reason why JPEG compression is used in this project is because all the other compression algorithms slow down the capture too much. All of the compression algorithms other than JPEG are too computationally intensive and slow the capture rate down to between 0 and 6fps. Even the least computationally intensive codecs such as Cinepak reduce the frame rate to below 6fps, which is quite unusable.

With even the lowest of compression codecs severely limiting the ability to capture video from the camera to disk at a reasonable frame-rate (at least 10fps seems a fairly reasonable amount for the purposes of this application), this rules out more advanced compression codecs such as Sorenson, which allows a much higher rate of compression on video for the same video quality as Cinepak. (http://www.planetoftunes.com/dv/dv_media/sorenson.pdf)

The problem with this expensive computational overhead is if the targeted fps it not met by the capture to disk, the capture will be stored with incorrect timing. The way the video is actually stored, it stores the video in terms of samples. When the samples are placed into the file, the samples themselves do not contain any time related data. They are just placed in the file as they are received and processed from the camera. The frame rate is specified as a header in the file, telling the process which opens that file what the default frame rate is. If the frame rate is not met when sampling, this reduces the number of frames in the file accordingly.

The playback process, which extracts the frame rate from the header, expects that the frame rate of the file matches the frame that was used to sample the file. Seeing as the frame rate for sampling did not meet the frame rate in the header, this means that the playback of that particular portion of the file will appear to play back faster when compared to a properly captured video. For example, if the sampling frame rate is specified as 10fps, but the sampling could only achieve a frame rate of 5fps, this means there is half the number of samples captured than was supposed to. This means the header in the file is wrong, as the input capture did not meet the requirements set out for it. When the playback application reads this header, it does not know that the capture did not meet its expected frame rate. It will play the video back at the frame rate according to the header but with only half the number of samples in the actual file, the video is going to play at twice the speed of what it was supposed to.

Rather than introducing this processing overhead and creating problems with playback speed, JPEG compression was used, even though it has poor compression compared to a dedicated video compression algorithm.

5.4.3 Threshold limits

The threshold value entered by the user in the contrast settings box, as seen in Figure 5, must be a value between 0 and 100. This is solved using the class NSNumberFormatter. It contains the methods setMinimum, setMaximum, and setFormatter. This sets up the minimum value allowed, the maximum value allowed, and allows this to be attached to the GUI text field in which the user sets the threshold value. If the user enters a threshold value below 0, the threshold is set as 0. If the user enters a threshold value above 100, the threshold is set as 100.

6 Conclusion

6.1 Objective Achievements

The project objectives will be discussed in terms of whether they have been met, and how there were fulfilled. They are as follows:

· Captures video data from the Apple iSight – the video data was captured using the various sequence grabbing functions available in QuickTime. The data is captured by the object of the class MyQuickDrawView
· Processes the video into a two-tone colour scheme in order to achieve a higher visibility for the visually impaired – this was achieved by gaining access to the pixel map as soon as the data was received by the sequence grabber. The image was processed in the function contrastFrame which resides in the class MyQuickDrawView. The was processed before it was displayed to screen and before it was saved to disk

· Allow the user to view this in real-time – this was only achieved when the compression codec of JPEG was used. No other compression codec allowed the display and capture in real-time as they were too computationally expensive

· Allow the user to input text captions while the video is being captured – this was achieved by capturing the text input along with the time the user pressed enter, and placing these into a text track along with the movie. This was implemented in the MyMovieText and UserText classes

· Allow the video and text to be saved to a file for later viewing – this was achieved by creating the video track; creating the text track; and then combining them together to form the movie file

· Allow a video file to be opened – this was achieved using an NSOpenPanel. The function which does it is openMovie which resides in the MyObject class

· Allow playback features in the movie file – this was achieved via the use of NSMovieView. Rather than create lower level functions which do the same job, QuickTime already provides NSMovieView which allows a simple call to the movie view in order to access the playback functions

· Allow editing of the movie file – this was achieved via the use of NSMovieView also. Again they are simple function calls to the movie view object

6.2 Future Direction / Improvements

Possible improvements include:

· Magnification/fullscreen

· Displaying the text channel

· Create a GUI component which can display time on a bar and show time selections. The current time bar cannot show selections

7 References

Codec Central – Cinepak Codec (1998) Retrieved May 17, 2004 from http://www.siggraph.org/education/materials/HyperGraph/video/codecs/Cinepak.html

Developing Cocoa Objective-C Applications: A Tutorial (2002) Retrieved January 9, 2004 from

http://developer.apple.com/documentation/Cocoa/Conceptual/ObjCTutorial/chapter01/chapter_1_section_1.html

QuickDraw 3D Color Utilities (1997) Retrieved August 7, 2004 from

http://developer.apple.com/documentation/QuickTime/QD3D/qd3dcolorutil.7.htm
QuickTime 6 API Reference (2002) Retrieved January 9, 2004 from

http://developer.apple.com/documentation/QuickTime/PDF/QT6APIRef.pdf

The Model-View-Controller (MVC) Paradigm (2003, May 1) Retrieved January 9, 2004 from

http://developer.apple.com/documentation/Cocoa/Conceptual/ObjCTutorial/chapter02/chapter_2_section_3.html#//apple_ref/doc/uid/20002050/TPXREF104
The Objective-C Programming Language (2003) Retrieved January 9, 2004 from

http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/1objc_intro/chapter_1_section_1.html

Ramshaw, D., Sorenson Video Compression (2000) Retrieved May 17 2004 from

http://www.planetoftunes.com/dv/dv_media/sorenson.pdf

8 Appendix – Source Code

All of the source code produced by this project was developed on the Apple Mac OS X 10.2 operating system using Apple Project Builder, Apple Interface Builder, and the QuickTime 6 API.

8.1 MyMovieText.h

//

// MyMovieText.h

// Cocoa - SGDataProc

//

// Created by wilson on Fri Aug 27 2004.

// Copyright (c) 2004 __MyCompanyName__. All rights reserved.
//

#import <Cocoa/Cocoa.h>

#import <Quicktime/QuickTime.h>

#import <CoreServices/CoreServices.h>

#import <ApplicationServices/ApplicationServices.h>

#import <AppKit/AppKit.h>

#import <Foundation/Foundation.h>
#import "MyVideo.h"

#import "UserText.h"

@interface MyMovieText : NSObject {

}

-(OSErr)myOpenMovie:(Movie *)theMovie filename:(NSString *)movieFilename refNum:(short *)theRefNum;

-(OSErr)myCloseMovie:(Movie *)theMovie refNum:(short)theRefNum;

-(OSErr)myCreateVideoTrack:(Movie)theMovie caption:(NSMutableArray *)theCaption;
-(OSErr)addCaptionToMovie:(NSMutableArray *)theCaption filename:(NSString *)movieFilename;

-(OSErr)myAddTextSample:(Movie *)theMovie media:(Media *)theMedia bounds:(Rect *)theBounds

 text:(NSString *)theText duration:(TimeScale)theDuration;

-(void)QTText_CopyCStringToPascal:(const char *)theSrc dest:(Str255)theDst;

-(void) checkError:(OSErr)error message:(NSString *)msg;

@end

8.2 MyMovieText.m

//

// MyMovieText.m

// Cocoa - SGDataProc
//

// Created by wilson on Fri Aug 27 2004.

// Copyright (c) 2004 __MyCompanyName__. All rights reserved.

//

#import "MyMovieText.h"

@implementation MyMovieText

#define BailErr(x) {err = x; if(err != noErr) return err;}

#define kMyErrorCode

-22222
#define kCaptionDuration
1

// duration of caption in seconds

#define kInvalidFileRefNum
-1

// an invalid file reference number

#define kGetFirstMovie

0

#define kGetFirstTrack

1

#define kTextTrackHeight
20

// default height for text track (in pixels)
#define kTrackOffset

0

#define kMediaOffset

0

-(OSErr)addCaptionToMovie:(NSMutableArray *)theCaption filename:(NSString *)movieFilename

{

 Movie theMovie;

 short myRefNum = kInvalidFileRefNum;

 OSErr err;

 NSLog(@"inside addCaptionToMovie, %@", movieFilename);
 //NSLog(@"inside addCaptionToMovie");

 //NSRunAlertPanel(@"Error", movieFilename, @"OK", nil, nil);

 if(!movieFilename)

NSLog(@"movieFilename is nil");

 err = [self myOpenMovie:&theMovie filename:movieFilename refNum:&myRefNum];
 [self checkError:err message:@"myOpenMovie failed"];

 //if (err != noErr)

//return err;

 if (err == noErr)

 {

err = [self myCreateVideoTrack:theMovie caption:theCaption];

[self checkError:err message:@"myCreateVideoTrack failed"];

//if (err != noErr)

 // return err;

 }

 err = [self myCloseMovie:&theMovie refNum:myRefNum];

 [self checkError:err message:@"myCloseMovie failed"];

 //if (err != noErr)

/////return err;

 return err;

}

-(OSErr)myOpenMovie:(Movie *)theMovie filename:(NSString *)movieFilename refNum:(short *)theRefNum
{

 MyVideo *myVideo;

 FSSpec myFSSpec;

 //short theRefNum = kInvalidFileRefNum;

 OSErr err;

 //short myResID = kGetFirstMovie;

 short myResID = movieInDataForkResID;
 myVideo = [[MyVideo alloc] init];

 if (!myVideo)

 {

NSRunAlertPanel(@"Error", @"MyVideo not created", @"OK", nil, nil);

BailErr(kMyErrorCode);

 }

 err = [MyVideo myMakeFSSpec:&myFSSpec fromPath:movieFilename];

 [self checkError:err message:@"myMakeFSSpec failed"];
 BailErr(err);

 // Open file with exclusive read & write permission

 err = OpenMovieFile(&myFSSpec, theRefNum, fsRdWrPerm);

 [self checkError:err message:@"OpenMovieFile failed"];

 BailErr(err);

 // Create a new movie from the movie file we just opened

 err = NewMovieFromFile(theMovie, *theRefNum, &myResID, NULL, newMovieActive, NULL);

 [self checkError:err message:@"NewMovieFromFile failed"];

 BailErr(err);

 NSLog(@"End of myOpenMovie");
 return err;

}

-(OSErr)myCloseMovie:(Movie *)theMovie refNum:(short)theRefNum

{

 short resId = movieInDataForkResID;

 OSErr err = noErr;

 if (theRefNum != kInvalidFileRefNum)

 {

//err = AddMovieResource(*theMovie, theRefNum, &resId, nil);

err = UpdateMovieResource(*theMovie, theRefNum, resId, nil);

[self checkError:err message:@"AddMovieResource failed"];

//if (err != noErr)

 // return err;

err = CloseMovieFile(theRefNum);

[self checkError:err message:@"CloseMovieFile failed"];

//if (err != noErr)

 // return err;

DisposeMovie(*theMovie);

err = GetMoviesError();

[self checkError:err message:@"DisposeMovie failed"];

//NSRunAlertPanel(@"Error", @"DisposeMovie() in MovieText" , @"OK", nil, nil);

//if (err != noErr)

 // return err;

 }

 return err;

}

/***

*

* FUNCTION: myCreateVideoTrack

* PURPOSE : Creates a text track and adds text samples to a movie

* INPUT : 1. theMovie

- The movie for which the text track is created
*

2. theCaption - Contains the text samples to be added to the movie

* NOTE : This function is based on qttext, which can be found at

*

http://developer.apple.com/samplecode/qttext/qttext.html

*

**/

-(OSErr)myCreateVideoTrack:(Movie)theMovie caption:(NSMutableArray *)theCaption

{

 OSErr

err = noErr;

 Track

myVideoTrack = NULL;

 Track

myTextTrack = NULL;

 Media

myMedia = NULL;

 //MediaHandler
myHandler = NULL;

 Fixed

myWidth;

 Fixed

myHeight;

 TimeScale

myTimeScale;

 MatrixRecord
myMatrix;

 NSLog(@"inside myCreateVideoTrack");

 // Get the first track of the type Video

 myVideoTrack = GetMovieIndTrackType(theMovie,

kGetFirstTrack,

// Get the first track

VideoMediaType,

// of the type VIDEO

movieTrackMediaType);
// look for media type only

 if (myVideoTrack == NULL)

goto bail;

 GetTrackDimensions(myVideoTrack, &myWidth, &myHeight);

 myTimeScale = GetMediaTimeScale(GetTrackMedia(myVideoTrack));

 /***

*

* Create the text track and media

*

**/
 myTextTrack = NewMovieTrack(theMovie, myWidth, FixRatio(kTextTrackHeight, 1), kNoVolume);

 if (myTextTrack == NULL)

goto bail;

 myMedia = NewTrackMedia(myTextTrack, TextMediaType, myTimeScale, NULL, 0);

 if (myMedia == NULL)

goto bail;

/*

 myHandler = GetMediaHandler(myMedia);

 if (myHandler == NULL)

goto bail;

*/

 // Figure out the text track geometry

 GetTrackMatrix(myTextTrack, &myMatrix);

 TranslateMatrix(&myMatrix, 0, myHeight);

 SetTrackMatrix(myTextTrack, &myMatrix);

 SetTrackEnabled(myTextTrack, TRUE);

 err = BeginMediaEdits(myMedia);

 if (err == noErr)

 {

Rect

myBounds;

//short

myIndex;

//TimeValue
myVideoSampleDuration;

//TimeRecord
myTimeRecord;

//NSDate

*key;

myBounds.top = 0;

myBounds.left = 0;

myBounds.right = Fix2Long(myWidth);

myBounds.bottom = Fix2Long(myHeight);

// Get the sample duration, ignore other data

/*

err = GetMediaSample(GetTrackMedia(myVideoTrack),

 NULL,

// don't return data

 0,

 NULL, // don't return # of bytes

 0,

 NULL,

 &myVideoSampleDuration,

 NULL,

 NULL,

 0,

 NULL,

 NULL);

[self checkError:err message:@"GetMediaSample failed"];

if (err != noErr)

goto bail;

 */

//NSEnumerator *enumerator = [theCaption keyEnumerator];

//NSLog(@"before add text sample");

unsigned arrayLength = 0;

unsigned i;

arrayLength = [theCaption count];

//while ((key = (NSDate *) [enumerator nextObject]))

for (i = 0; i < arrayLength; i++)

{

//Str255

myPascalStr;

TimeValue

myTextSampleDuration;

NSTimeInterval
pauseDuration = 0.0;

//NSString

*caption;

//char

*myCStr;

/* code that uses the returned key */

//NSLog(@"date = %@ and text = %@", key, [theCaption objectForKey:key]);

UserText *textData = (UserText *)[theCaption objectAtIndex:i];

pauseDuration = [textData duration] - (NSTimeInterval)kCaptionDuration;

NSLog(@"pauseDuration = %f, caption duration = %f", pauseDuration, [textData duration]);

if (pauseDuration > 0)

{

NSLog(@"adding pause");

myTextSampleDuration = (TimeValue)(pauseDuration * (NSTimeInterval)myTimeScale);

NSLog(@"sample duration = %d", myTextSampleDuration);

// Add a text containing only spaces to create the effect of pauses

[self myAddTextSample:&theMovie media:&myMedia bounds:&myBounds

 text:@" " duration:myTextSampleDuration];

}

myTextSampleDuration = kCaptionDuration * myTimeScale;

// Add user-typed text into movie

[self myAddTextSample:&theMovie media:&myMedia bounds:&myBounds

text:[textData text] duration:myTextSampleDuration];

// set the time scale of the media to that of the movie

//myTextSampleDuration = myVideoSampleDuration * 20;

/*

myTextSampleDuration = myTimeScale * (TimeScale)kCaptionDuration;

myTimeRecord.value.lo = myTextSampleDuration;

myTimeRecord.value.hi = 0;

myTimeRecord.scale = GetMovieTimeScale(theMovie);

NSLog(@"movie timescale = %d", myTimeRecord.scale);

ConvertTimeScale(&myTimeRecord, GetMediaTimeScale(myMedia));

NSLog(@"media timescale = %d", GetMediaTimeScale(myMedia));

myTextSampleDuration = myTimeRecord.value.lo;

//caption = (NSString *)[theCaption objectForKey:key];

NSLog(@"current caption = %@", caption);

//myCStr = [caption UTF8String];

[self QTText_CopyCStringToPascal:[caption UTF8String] dest:myPascalStr];

err = TextMediaAddTextSample(myHandler,

 (Ptr)(&myPascalStr[1]),

 myPascalStr[0],
// first element of a Pascal str specifies its length

 0,

 0,

 0,

 NULL,

 NULL,

 teCenter,

 &myBounds,

 dfClipToTextBox,

 0,

 0,

 0,

 NULL,

 myTextSampleDuration,

 NULL);

[self checkError:err message:@"TextMediaAddTextSample failed"];

if (err != noErr)

goto bail;

 */

}

 }

 NSLog(@"after add text sample");
 err = EndMediaEdits(myMedia);

 [self checkError:err message:@"EndMediaEdits failed"];

 if (err != noErr)

goto bail;

 // Insert text media into the text track

 err = InsertMediaIntoTrack(myTextTrack,

 kTrackOffset,

 kMediaOffset,

 GetMediaDuration(myMedia),

 fixed1);

 NSLog(@"media duration = %d", GetMediaDuration(myMedia));

 [self checkError:err message:@"InsertMediaIntoTrack failed"];

 if (err != noErr)

goto bail;

bail:

return err;

}

-(OSErr)myAddTextSample:(Movie *)theMovie media:(Media *)theMedia bounds:(Rect *)theBounds text:(NSString *)theText duration:(TimeScale)theDuration

{

MediaHandler
myHandler = NULL;

TimeRecord

myTimeRecord;

TimeScale

mediaTimeScale;

//Rect

myBounds;

Str255

myPascalStr;

TimeValue

myTextSampleDuration;

OSErr

err = noErr;

 myHandler = GetMediaHandler(*theMedia);

 if (myHandler == NULL)

{

err = kMyErrorCode;

goto bail;

}

/*

theBounds->top = 0;

theBounds->left = 0;

theBounds->right = Fix2Long(myWidth);

theBounds->bottom = Fix2Long(myHeight);

*/

mediaTimeScale = GetMediaTimeScale(*theMedia);

//myTextSampleDuration = mediaTimeScale * (TimeScale)kCaptionDuration;

//myTimeRecord.value.lo = myTextSampleDuration;

myTimeRecord.value.lo = theDuration;

myTimeRecord.value.hi = 0;

myTimeRecord.scale = GetMovieTimeScale(*theMovie);

//ConvertTimeScale(&myTimeRecord, GetMediaTimeScale(*theMedia));

ConvertTimeScale(&myTimeRecord, mediaTimeScale);

myTextSampleDuration = myTimeRecord.value.lo;

//caption = (NSString *)[theCaption objectForKey:key];

NSLog(@"current caption = %@", theText);

//myCStr = [caption UTF8String];

[self QTText_CopyCStringToPascal:[theText UTF8String] dest:myPascalStr];

err = TextMediaAddTextSample(myHandler,

 (Ptr)(&myPascalStr[1]),

 myPascalStr[0],
// first element of a Pascal str specifies its length

 0,

 0,

 0,

 NULL,

 NULL,

 teCenter,

 theBounds,

 dfClipToTextBox,

 0,

 0,

 0,

 NULL,

 myTextSampleDuration,

 NULL);

[self checkError:err message:@"TextMediaAddTextSample failed"];

bail:

return err;

}

//////////

//

// QTText_CopyCStringToPascal

// Convert the source C string to a destination Pascal string as it's copied.
//

// The destination string will be truncated to fit into a Str255 if necessary.

// If the C string pointer is NULL, the Pascal string's length is set to zero.

//

// This routine is borrowed from CGlue.c, by Nick Kledzik.
//

//////////

//void QTText_CopyCStringToPascal (const char *theSrc, Str255 theDst)

-(void)QTText_CopyCStringToPascal:(const char *)theSrc dest:(Str255)theDst

{

 short
myLength = 0;

 // handle case of overlapping strings

 if ((void *)theSrc == (void *)theDst)

 {

unsigned char

*myCurDst = &theDst[1];

unsigned char

myChar;

myChar = *(const unsigned char *)theSrc++;

while (myChar != '\0')

{

 unsigned char
myNextChar;

 // use myNextChar so we don't overwrite what we are about to read

 myNextChar = *(const unsigned char *)theSrc++;

 *myCurDst++ = myChar;

 myChar = myNextChar;

 if (++myLength >= 255)

break;

}

 }

 else if (theSrc != NULL)

 {

unsigned char

*myCurDst = &theDst[1];

short

myOverflow = 255;

// count down, so test it loop is faster

register char

myTemp;

// we can't do the K&R C thing of â€œwhile (*s++ = *t++)â€� because it will copy the trailing zero,

// which might overrun the Pascal buffer; instead, we use a temp variable

while ((myTemp = *theSrc++) != 0)

{

 *(char *)myCurDst++ = myTemp;

 if (--myOverflow <= 0)

break;

}

myLength = 255 - myOverflow;

 }

 // set the length of the destination Pascal string

 theDst[0] = myLength;

}

-(void) checkError:(OSErr)error message:(NSString *)msg

{

 if (error != noErr)

 {

NSLog(@"Error code = %d", error);

NSRunAlertPanel(@"Error", msg , @"OK", nil, nil);

 }

}

@end

8.3 MyObject.h

//////////

//

//
File:

MyObject.h

//

//
Contains:
Interface file for our MyObject class.

//

//
Written by:
Apple Developer Technical Support

//

//
Copyright:
© 2002 by Apple Computer, Inc., all rights reserved.
//

//
Change History (most recent first):

//

//
 <1>

5/20/02
srk

first file

//

//////////

/*

IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple")

 in consideration of your agreement to the following terms, and your use,

 installation, modification or redistribution of this Apple software constitutes
 acceptance of these terms. If you do not agree with these terms, please do not use,

 install, modify or redistribute this Apple software.

 In consideration of your agreement to abide by the following terms, and subject to
 these terms, Apple grants you a personal, non-exclusive license, under Apple's

 copyrights in this original Apple software (the "Apple Software"), to use,

 reproduce, modify and redistribute the Apple Software, with or without

 modifications, in source and/or binary forms; provided that if you redistribute the
 Apple Software in its entirety and without modifications, you must retain this

 notice and the following text and disclaimers in all such redistributions of the

 Apple Software. Neither the name, trademarks, service marks or logos of Apple
 Computer, Inc. may be used to endorse or promote products derived from the Apple

 Software without specific prior written permission from Apple. Except as expressly

 stated in this notice, no other rights or licenses, express or implied, are granted
 by Apple herein, including but not limited to any patent rights that may be

 infringed by your derivative works or by other works in which the Apple Software

 may be incorporated.

 The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO
 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES

 OF NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING

 THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE OR IN COMBINATION WITH YOUR
 PRODUCTS.

 IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR

 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING
 IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE

 APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER UNDER THEORY OF CONTRACT, TORT

 (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS BEEN
 ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

/* MyObject */

#import <Carbon/Carbon.h>

#import <Cocoa/Cocoa.h>
#import <AppKit/AppKit.h>

#import <Foundation/Foundation.h>

#import <QuickTime/QuickTime.h>

#import "MyQuickDrawView.h"

#import "MyVideo.h"

#import "MyMovieText.h"

#import "UserText.h"

// An error code not defined by Apple to indicate errors specific to my program
#define kMyErrorCode -22222

#define kSizeIndicatorMin 0

// the min the size indicator can display

#define kSizeIndicatorMax 10485760
// max. Equal to 10MB. Also used as max filesize

#define kSizeIndicatorInterval 1.0
// update interval of size progress indicator
#define kTimeSliderUpdateInterval 0.2

#define kScale 1000

// scales the movie time to milliseconds instead of seconds

enum {

 PLAYBACK = 1001,

 RECORD = 1002

};

@interface MyObject : NSObject

{

 IBOutlet id view;

// a MyQuickDrawView object for recording

// and display while recording

 IBOutlet NSMovieView *movieView;
// display for playback

 IBOutlet id window;

 // menu items

 IBOutlet NSMenuItem *openMovieMenuItem;

 IBOutlet NSMenuItem *closeMovieMenuItem;
 IBOutlet NSMenuItem *saveAsMenuItem;

 IBOutlet NSMenuItem *deleteSelectionMenuItem;

 IBOutlet NSMenuItem *contrastMenuItem;

 // GUI elements used exclusively in record mode

 IBOutlet NSButton *recordButton;

 IBOutlet NSTextField *textInput;
// user text input field
 IBOutlet NSProgressIndicator *sizeIndicator; // progress indicator displaying

 // size of recording movie

 // GUI elements used is record and playback mode

 IBOutlet NSButton *pauseButton;

 IBOutlet NSButton *stopButton;

 IBOutlet NSMatrix *modeSelectionRadioButton; // mode selection radio button

 // GUI elements used exclusively in playback mode

 IBOutlet NSButton *playButton;

 IBOutlet NSButton *gotoBeginningButton;

 IBOutlet NSButton *gotoEndButton;
 IBOutlet NSButton *setSelectBeginningButton;

 IBOutlet NSButton *setSelectEndButton;

 IBOutlet NSSlider *timeSlider;
// slider showing playback position

 IBOutlet NSTextField *timeDisplay;
// text field displaying playback position
 // GUI elements used to control the two-tone contrast

 IBOutlet NSButton *contrastCheckBox;
// checkbox toggling the contrast

 IBOutlet NSColorWell *lightColorWell;
// user selected light colour

 IBOutlet NSColorWell *darkColorWell;
// user selected dark colour
 IBOutlet NSTextField *thresholdField;
// user selected threshold

 // text input objects

 NSDate *gStopTime;

// recording stop time

 NSDate *gLastInsertTime;
// last text-insertion time

 NSString *gMovieFilename;
// movie filename
 NSMutableArray *gCaption;
// array for storing text

// inputs and time info

 MyVideo *gMyVideo;

// object for recording and adding text

 BOOL gRecording;

// YES if application is in recording movie

 BOOL gPlaybackMode;

// YES if application is in playback mode

// NO if application is in recording mode

 // time elements used in selection editing

 TimeValue gSelectBeginningTime;
// selection start time

 TimeValue gSelectEndTime;

// selection end time
 TimeValue gDuration;

// time between startselect and endselect

 NSMovie *gOpenedMovie;

// holds the movie opened by the open panel

 NSTimer *gPlaybackTimer;

// timer for updating playback time

// slider and time display

 NSTimer *gSizeIndicatorTimer;
// timer for updating size indicator

}

// used by record mode only

-(IBAction)record: (id)sender;

-(IBAction)inputText: (id)sender;

-(OSErr)addTextToMovie;

// used by both record and playback modes

-(IBAction)pause: (id)sender;
-(IBAction)stop: (id)sender;

///

//

// All the following functions were developed by Phu Nguyen

// except for the NSObject class overrides: init, awakeFromNib

// and applicationWillTerminate
//

//

// used by playback only - buttons

-(IBAction)play : (id)sender;

-(IBAction)gotoBeginning : (id)sender;

-(IBAction)gotoEnd : (id)sender;

-(IBAction)setSelectBeginning : (id)sender;
-(IBAction)setSelectEnd : (id)sender;

// used by playback only - menu items

-(IBAction)openMovie : (id)sender;

-(IBAction)closeMovie : (id)sender;

-(IBAction)saveMovie : (id)sender;

-(IBAction)deleteSelection : (id)sender;

// used by mode radio buttons
-(IBAction)playbackModeChanged : (id)sender;

// used by playback time slider

-(IBAction)timeSliderMoved : (id)sender;

// used by contrast panel

-(IBAction)contrastCheckBoxChanged : (id)sender;

-(IBAction)contrastApply : (id)sender;

// initialise GUI components
-(void)contrastSettingsInit;

-(void)thresholdFieldInit;

-(void)sizeIndicatorInit;

// update various GUI components

-(void)openGUIUpdate : (BOOL)opened;

-(void)playbackModeMenuUpdate : (BOOL)playbackMode;

-(void)sizeIndicatorUpdate : (id)sender;
-(void)updatePlaybackTimedUIObjects : (id)sender;

// user functions

-(double)getCurrentMovieTime;

-(NSString *)timeStringCreate : (double)timeIn;

// delegate for threshold field, to keep the values between 0 and 100

-(BOOL)control:(NSControl *)control didFailToFormatString:(NSString *)string errorDescription:(NSString *)error;
// NSObject subclass overrides

- (id)init;

- (void)awakeFromNib;

- (void)applicationWillTerminate:(NSNotification *)notification;

@end
8.4 MyObject.m

//////////

//

//
File:

MyObject.m
//

//
Contains:
Implementation file for the MyObject class.

//

//
Written by:
Apple Developer Technical Support

//

//
Copyright:
© 2002 by Apple Computer, Inc., all rights reserved.

//

//
Change History (most recent first):

//

//
 <1>

5/20/02
srk

first file
//

//////////

/*

 IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple")

 in consideration of your agreement to the following terms, and your use,

 installation, modification or redistribution of this Apple software constitutes
 acceptance of these terms. If you do not agree with these terms, please do not use,

 install, modify or redistribute this Apple software.

 In consideration of your agreement to abide by the following terms, and subject to
 these terms, Apple grants you a personal, non-exclusive license, under Apple's

 copyrights in this original Apple software (the "Apple Software"), to use,

 reproduce, modify and redistribute the Apple Software, with or without

 modifications, in source and/or binary forms; provided that if you redistribute the
 Apple Software in its entirety and without modifications, you must retain this

 notice and the following text and disclaimers in all such redistributions of the

 Apple Software. Neither the name, trademarks, service marks or logos of Apple
 Computer, Inc. may be used to endorse or promote products derived from the Apple

 Software without specific prior written permission from Apple. Except as expressly

 stated in this notice, no other rights or licenses, express or implied, are granted
 by Apple herein, including but not limited to any patent rights that may be

 infringed by your derivative works or by other works in which the Apple Software

 may be incorporated.

 The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO
 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES

 OF NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING

 THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE OR IN COMBINATION WITH YOUR
 PRODUCTS.

 IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR

 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING
 IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE

 APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER UNDER THEORY OF CONTRACT, TORT

 (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS BEEN
 ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

#import <QuickTime/QuickTime.h>

#import <Carbon/Carbon.h>

#import "MyObject.h"

#import "MyQuickDrawView.h"

@implementation MyObject

#define BailErr(x) {err = x; if(err != noErr) goto bail;}
///

//

// Used by record mode only

//

///

-(IBAction)inputText: (id)sender

{

 // Shouldn't record text if not recording!!!!!
 //NSTimeInterval pauseDuration;

 //static NSDate *lastInsertTime = gRecStartTime;

 NSString *inputStr = [textInput stringValue];

 if (![inputStr isEqualToString:@""])

 {

//[gTextInputDict setObject:[textInput stringValue] forKey:[NSDate date]];

NSTimeInterval pauseDuration;

UserText *textData;

// lastInsertTime will always be earlier than current time

// we take the absolute value because the result of timeIntervalSinceNow

// will always be negative

NSLog(@"gLastTime = %@", [gLastInsertTime description]);

pauseDuration = fabs([gLastInsertTime timeIntervalSinceNow]);

NSLog(@"pauseDuration = %f", pauseDuration);

// Create a UserText object and add it to the gCaption array

textData = [[UserText alloc] init];

if (textData)

{

[textData setDuration:pauseDuration];

[textData setText:inputStr];

[gCaption addObject:textData];

[textData release];

}

[gLastInsertTime release];

gLastInsertTime = [[NSDate date] retain]; // Set lastInsertTime to now

NSLog(@"gLastTime 2 = %@", [gLastInsertTime description]);

 }

 else

 {

NSLog(@"input string is empty");

 }

 // Make the text field active again after user hitting Enter

 [window makeFirstResponder: textInput];
}

-(OSErr)addTextToMovie

{

 MyMovieText *movieText = nil;

 OSErr err = noErr;

/*

int i;

for (i = 0; i < [gCaption count]; i++)

{

UserText *textData = (UserText *)[gCaption objectAtIndex:i];

//NSLog(@"duration = %f", [textData duration]);

NSLog(@"duration = %f, text = %@", [textData duration], [textData text]);

}

 */

movieText = [[MyMovieText alloc] init];

NSAssert(movieText, @"movieText couldn't not be created");

err = [movieText addCaptionToMovie:gCaption filename:gMovieFilename];

if (err != noErr)

{

NSRunAlertPanel(@"Error", @"addCaptionToMovie failed", @"OK", nil, nil);

return err;

}

return err;

}

-(IBAction)record: (id)sender

{

 OSErr err = noErr;

 // Create and initialise gCaption
 gCaption = [[NSMutableArray alloc] init];

 if (!gCaption)

 BailErr(kMyErrorCode);

 // Create and initialise gMyVideo

 gMyVideo = [[MyVideo alloc] init];

 if (!gMyVideo)

 BailErr(kMyErrorCode);

 // Pass gMyVideo object to MyQuickDrawViewClass because
 // we need to use the same MyVideo object over there for recording

 [view setMyMovie:gMyVideo];

 // Get the filename from user, but we must first relinquish the old one

 [gMovieFilename release];

 gMovieFilename = [[gMyVideo promptMovieFilename] retain];

 if (!gMovieFilename)

 BailErr(kMyErrorCode);

 // Create the movie file

 err = [gMyVideo createMovie:[view boundsRect] gWorld:[view gworld]

 filename:gMovieFilename];
 BailErr(err);

 // Configure the user interface accordingly

 [recordButton setEnabled:NO]; // disable record button

 [pauseButton setEnabled:YES]; // enable pause button

 [stopButton setEnabled:YES]; // enable stop button
 [textInput setEnabled:YES];
 // enable text input

 [view setRecording:YES]; // start recording

 [self sizeIndicatorInit]; // initialise and start

 // the movie size indicator

 // start time of recording, used in addTextToMovie()
 gLastInsertTime = [[NSDate date] retain];

 if (!gLastInsertTime)

 BailErr(kMyErrorCode);

 NSLog(@"time in str = %@", [gLastInsertTime description]);

 bail:

 // Cleanup code if something goes wrong
 if (err != noErr)

 {

 if (gCaption)

 [gCaption release];

 if (gMyVideo)

 {

 [gMyVideo closeMovie];

 [gMyVideo release];

 NSRunAlertPanel(@"Error", @"Record failed", @"OK", nil, nil);
 }

 }

}

///

//

// Used by both record and playback modes

//

///

-(IBAction)pause: (id)sender
{

 // if in recording mode

 // else in playback mode

 if (!gPlaybackMode)

 {

 BOOL recording;

 recording = [view recording];

 [view setRecording:!recording];

 }

 else

 {

 [movieView setEditable:YES];
 [movieView stop:sender]; // Stops movieview at current position

 // It can resume playback from

 // this position, not beginning

 [closeMovieMenuItem setEnabled:YES];
 [pauseButton setEnabled:NO];

 [playButton setEnabled:YES];

 }

}

-(IBAction)stop: (id)sender

{

 if (!gPlaybackMode) // if in recording mode

 {

 [view setRecording:NO];
 // stop recording

 [gMyVideo closeMovie];
 // close movie file
 [gMyVideo release]; // free resources used by gMyVideo

 [gSizeIndicatorTimer invalidate]; // stop size indicator timer

 [gSizeIndicatorTimer release]; // release timer resource

 [stopButton setEnabled:NO]; // disable stop button

 [recordButton setEnabled:YES]; // enable record button

 [pauseButton setEnabled:NO]; // disable pause button

 gStopTime = [NSDate date]; // stop time of recording

 NSLog(@"before stop");

 // Add caption to movie (if we have any)

 if ([gCaption count] > 0)

 [self addTextToMovie];

 [gCaption release];

 NSLog(@"after stop");

 }

 else // it is in playback mode

 {

 [movieView setEditable:YES];

 [movieView stop:sender]; // stop movie at current spot

 [movieView gotoBeginning:sender]; // reset position to the beginning

 [closeMovieMenuItem setEnabled:YES];

 [pauseButton setEnabled:NO];
 [playButton setEnabled:YES];

 [stopButton setEnabled:NO];

 [gPlaybackTimer invalidate]; // stop playback timer

 [gPlaybackTimer release]; // release timer resource

 }

}

///
//

// Used by playback only - buttons

//

///

//////////

//

// play

//

// plays the opened movie

//

//////////

-(IBAction)play : (id)sender
{

 [movieView start:sender];

 [movieView setEditable:NO];

 [pauseButton setEnabled:YES];

 [playButton setEnabled:NO];

 [stopButton setEnabled:YES];

 [closeMovieMenuItem setEnabled:NO];

 gPlaybackTimer =
 [[NSTimer scheduledTimerWithTimeInterval:kTimeSliderUpdateInterval

 target:self

 selector:@selector(updatePlaybackTimedUIObjects:)

 userInfo:nil

 repeats:YES] retain];

}

-(IBAction)gotoBeginning : (id)sender

{

 [movieView gotoBeginning:sender];

}

// movie autoloops when end is reaches so basically redundant unless

// loop is turned off

-(IBAction)gotoEnd : (id)sender
{

 [movieView gotoEnd:sender];

}

-(IBAction)setSelectBeginning : (id)sender

{

 gSelectBeginningTime = GetMovieTime([gOpenedMovie QTMovie], nil);

 NSLog(@"Beginning select time is %d secs", (long)gSelectBeginningTime);

}

// only sets duration on setSelectEnd

// if beginning time changes after that, duration is still the previous

// if selectend is selected first, the duration is from the start of movie

-(IBAction)setSelectEnd : (id)sender

{

 gSelectEndTime = GetMovieTime([gOpenedMovie QTMovie], nil);
 // Duration of selection is time between beginning and end

 // Doesn't matter if end is before beginning, accounts for it

 gDuration = abs(gSelectEndTime - gSelectBeginningTime);

 if (gSelectEndTime < gSelectBeginningTime)
 gSelectBeginningTime = gSelectEndTime;

 NSLog(@"Selection duration is %d secs", (long)gDuration);

}

///

//

// Used by playback only - menu items
//

///

//////////

//

// openMovie

//

// Opens a dialog box allowing the user to select a movie file to open for playback

//

//////////

-(IBAction)openMovie : (id)sender
{

 int result;

 TimeValue movieDuration;

 NSArray *fileTypes = [NSArray arrayWithObject:@"mov"];

 NSOpenPanel *op = [NSOpenPanel openPanel];

 [op setAllowsMultipleSelection:NO];

 [op setCanChooseFiles:YES];

 [op setCanChooseDirectories:NO];
 result = [op runModalForDirectory:NSHomeDirectory() file:nil types:fileTypes];

 if (result == NSOKButton)

 {

 NSArray *movieToOpen = [op URLs];

 NSURL *movieURL = [movieToOpen objectAtIndex:0];

 gOpenedMovie = [[NSMovie alloc] initWithURL:movieURL byReference:NO];
 [movieView setMovie:gOpenedMovie];

 [movieView showController:NO adjustingSize:NO];

 [movieView setLoopMode:NSQTMovieLoopingPlayback];

 movieDuration = GetMovieDuration([gOpenedMovie QTMovie]);
 [timeSlider setEnabled:YES];

 [timeSlider setMaxValue: (double)movieDuration];

 BOOL opened = YES;

 [self openGUIUpdate:opened];

 }

}

-(IBAction)closeMovie : (id)sender

{

 BOOL opened = NO;

 [self openGUIUpdate:opened];
 [gOpenedMovie release];

}

-(IBAction)saveMovie : (id)sender

{

 OSErr err = noErr;

 int runResult;

 NSSavePanel *sp = [NSSavePanel savePanel];

 [sp setRequiredFileType:@"mov"]; // must have extension .mov

 // display the NSSavePanel
 // if successful, save file under designated name

 runResult = [sp runModalForDirectory:NSHomeDirectory() file:nil];

 // run if save button is pressed

 if (runResult == NSOKButton)

 {

 FSSpec myFSSpec;

 Movie aMovie;

 NSString *filename;

 NSString *filenameWithExtension;

 NSRange range;

filename = [sp filename]; // get filename entered from save panel

 // search for extension .mov

range = [filename rangeOfString:@".mov"

 options:(NSCaseInsensitiveSearch|NSBackwardsSearch)];

 // if .mov extension not found in filename entered by user, add extension

// else .mov extension found so leave filename entered as is

if ((range.location == NSNotFound) && (range.length == 0))
 filenameWithExtension = [filename stringByAppendingString:@".mov"];

 else

 filenameWithExtension = [filename copy];

 err = [MyVideo myMakeFSSpec:&myFSSpec fromPath:filenameWithExtension];

// save movie to filename specified by user in save panel

 aMovie = FlattenMovieData([gOpenedMovie QTMovie], flattenAddMovieToDataFork,

 &myFSSpec, FOUR_CHAR_CODE('TVOD'),

 smSystemScript,

 createMovieFileDeleteCurFile |

 createMovieFileDontCreateResFile);

 DisposeMovie(aMovie);

 }

}

-(IBAction)deleteSelection : (id)sender

{

 SetMovieSelection([gOpenedMovie QTMovie], gSelectBeginningTime, gDuration);
 ClearMovieSelection([gOpenedMovie QTMovie]);

 NSLog(@"Selection deleted");

}

///

-(IBAction)playbackModeChanged : (id)sender

{

 int radioButtonMode = [[sender selectedCell] tag];

 BOOL playbackMode;

 switch(radioButtonMode)

 {

 case PLAYBACK:

 {

 playbackMode = TRUE;

 [recordButton setEnabled:NO];

 [textInput setEnabled:NO];
 }

 break;

 case RECORD:

 {

 playbackMode = FALSE;

 [recordButton setEnabled:YES];

 [textInput setEnabled:YES];

 }

 break;

 }

 gPlaybackMode = playbackMode;

 [self playbackModeMenuUpdate:playbackMode];
 [self openGUIUpdate:NO];

}

//////////

//

// timeSliderMoved

//

// updates the current movie time when the time slider is moved manually

//

//////////

-(IBAction)timeSliderMoved : (id)sender

{

 double currentSliderValue;
 currentSliderValue = [sender doubleValue]; // get the value from the slider

 SetMovieTimeValue([gOpenedMovie QTMovie], currentSliderValue);

}

-(IBAction)contrastCheckBoxChanged : (id)sender

{

 BOOL boolValue;

 // if checkbox is not ticked, contrast not enabled
 // else checkbox is ticked, contrast enabled

 if ([sender state] == NSOffState)

 boolValue = NO;

 else

 boolValue = YES;

 // if contrast is not enabled, disable the color wells and threshold

 [lightColorWell setEnabled:boolValue];
 [darkColorWell setEnabled:boolValue];

 [thresholdField setEnabled:boolValue];

}

//////////

//

// contrastApply

//

// Sets the user selected contrast colors and the

// threshold value when the OK button is pressed
//

//////////

-(IBAction)contrastApply : (id)sender

{

 // Allow the contrast function to process each frame

 if ([contrastCheckBox state] == NSOnState)

 [view setContrastEnable:YES];

 else

 [view setContrastEnable:NO];

 [view setThreshold:[thresholdField intValue]];
 [view setThresholdColors:[lightColorWell color]:[darkColorWell color]];

}

///

//

// Initialise GUI components

//

///
-(void)contrastSettingsInit

{

 // Initialise contrast settings

 [contrastCheckBox setState:NSOffState];

 [contrastCheckBox setAllowsMixedState:NO]; // only on/off state

 [self thresholdFieldInit];

}

-(void)thresholdFieldInit

{

 NSDecimalNumber *dNumMin = [[[NSDecimalNumber alloc] init] autorelease];

 NSDecimalNumber *dNumMax = [[[NSDecimalNumber alloc] init] autorelease];

 NSNumberFormatter *thresholdNumberFormatter = [[[NSNumberFormatter alloc] init] autorelease];
 dNumMin = [NSDecimalNumber decimalNumberWithString:@"0"];

 dNumMax = [NSDecimalNumber decimalNumberWithString:@"100"];

 [thresholdNumberFormatter setAllowsFloats:NO];

 [thresholdNumberFormatter setMinimum:dNumMin];
 [thresholdNumberFormatter setMaximum:dNumMax];

 [[thresholdField cell] setFormatter:thresholdNumberFormatter];

 [thresholdField setStringValue:@"50"];

}

//////////

//

// sizeIndicatorInit

//

// Initialises the settings of the filesize progress indicator ready for display
//

//////////

-(void)sizeIndicatorInit

{

 [sizeIndicator setStyle:NSProgressIndicatorBarStyle];

 [sizeIndicator setIndeterminate:FALSE];

 [sizeIndicator setDisplayedWhenStopped:YES];

 [sizeIndicator setControlSize:NSSmallControlSize];
 [sizeIndicator setControlTint:NSClearControlTint];

 [sizeIndicator setBezeled:YES];

 // Set the limits of the indicator

 [sizeIndicator setMinValue:kSizeIndicatorMin];

 [sizeIndicator setMaxValue:kSizeIndicatorMax];
 gSizeIndicatorTimer =

 [[NSTimer scheduledTimerWithTimeInterval:kSizeIndicatorInterval

 target:self

 selector:@selector(sizeIndicatorUpdate:)
 userInfo:nil

 repeats:YES] retain];

}

///

//

// Update various GUI components

//

///
-(void)openGUIUpdate : (BOOL)opened

{

 BOOL closed = !opened;

 [pauseButton setEnabled:opened];

 [playButton setEnabled:opened];

 [stopButton setEnabled:opened];

 [gotoBeginningButton setEnabled:opened];

 [gotoEndButton setEnabled:opened];

 [setSelectBeginningButton setEnabled:opened];

 [setSelectEndButton setEnabled:opened];

 [openMovieMenuItem setEnabled:closed];

 [closeMovieMenuItem setEnabled:opened];
 [saveAsMenuItem setEnabled:opened];

 [deleteSelectionMenuItem setEnabled:opened];

}

//////////

//

// updatePlaybackTimedUIObjects

//

// updates the time slider and the time display at set time intervals

//

//////////

-(void)playbackModeMenuUpdate : (BOOL)playbackMode
{

 BOOL recordMode = !playbackMode;

 [openMovieMenuItem setEnabled:playbackMode];

 [closeMovieMenuItem setEnabled:NO];

 [saveAsMenuItem setEnabled:NO];

 [contrastMenuItem setEnabled:recordMode];

}

//////////
//

// sizeIndicatorUpdate

//

// Updates the filesize indicator display every time the timer reaches its update interval

//

//////////

-(void)sizeIndicatorUpdate : (id)sender

{

 // if movie size has reached limit

 // else movie size still within limit so just update progres indicator
 if ([sizeIndicator doubleValue] >= kSizeIndicatorMax)

 {

 NSRunAlertPanel(@"Error", @"Maximum movie filesize reached", @"OK", nil, nil);

 [gSizeIndicatorTimer invalidate];

 }

 else

 {

 // change colour to warn user they are at 90% movie capacity

 if (([sizeIndicator doubleValue] / kSizeIndicatorMax) >= 0.9)

 [sizeIndicator setControlTint:NSDefaultControlTint];

 // set size indicator value so it can display the current movie size
 [sizeIndicator setDoubleValue:[gMyVideo myGetMovieSize:gMovieFilename]];

 }

}

-(void)updatePlaybackTimedUIObjects : (id)sender

{

 double currentMovieTime;

 // if movie is at end of file while playing

 // else movie is not at end of file
 if (IsMovieDone([gOpenedMovie QTMovie]))

 {

 [movieView setEditable:YES];

 [movieView stop:sender]; // stop movie at current spot

 [movieView gotoBeginning:sender]; // reset position to the beginning
 [gPlaybackTimer invalidate]; // stop playback timer

 [gPlaybackTimer release]; // release timer resource

 }

 else

 {

 currentMovieTime = [self getCurrentMovieTime];

 // update slider

[timeSlider setDoubleValue:(currentMovieTime)]; // update slider
 // update time display

[timeDisplay setStringValue:[self timeStringCreate:currentMovieTime]];

 }

}

///

//

// User functions
//

///

//////////

//

// getCurrentMovieTime

//

// returns the current movie time in terms of milliseconds instead of seconds

//

//////////

-(double)getCurrentMovieTime
{

 TimeValue currentTime;

 TimeRecord timeRecord;

 timeRecord.scale = kScale;

 timeRecord.base = nil;

 currentTime = (double)GetMovieTime([gOpenedMovie QTMovie], nil);

 return (currentTime);

}

//////////

//

// timeStringCreate
//

// returns the current movie time as a string of the format

// "hours:mins:secs.millisecs"

//

//////////

-(NSString *)timeStringCreate : (double)timeIn

{

 NSString *timeString;

 int hours, mins, secs, millis, numSecs;

 numSecs = (int)floor(timeIn/kScale);
 hours = (int)(numSecs/3600);

 mins = (int)((numSecs - (hours * 3600))/60);

 secs = numSecs % 60;

 millis = (int)(((timeIn/kScale) - numSecs) * kScale);

 timeString = [NSString stringWithFormat:@"%02d:%02d:%02d.%03d",

 hours, mins, secs, millis];

 return timeString;

}

// delegate for threshold field, to keep the values between 0 and 100

-(BOOL)control:(NSControl *)control didFailToFormatString:(NSString *)string errorDescription:(NSString *)error
{

 if(control == thresholdField)

 {

 NSRunAlertPanel(@"Error", @"Threshold value not within range", @"OK", nil, nil);

 return NO;

 }

 return YES;

}

///
//

// NSObject subclass overrides

//

///

//////////

//

// init

//

// Our controller's initialization method. Well

// add our self as an observer for application
// termination notifications, so we can perform

// cleanup when the application quits.

//

//////////

- (id)init

{

 /* we'll want to be called when the application

 quits so we can do any cleanup */

 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(applicationWillTerminate:)

 name:@"NSApplicationWillTerminateNotification" object:NSApp];

 //gTextInputDict = [[NSMutableDictionary alloc] init];

 return self;

}

//////////

//

// awakeFromNib
//

// Called after all our objects are unarchived and

// connected but just before the interface is made visible

// to the user. We will do custom initialization of our

// objects here.

//

//////////

- (void)awakeFromNib

{

 NSString

*windowTitle;

 OSErr

err;

 /* set the window title */

 windowTitle = @"iView";

 [window setTitle:windowTitle];

 /* pass our view object to our MyQuickDrawView class so we can access methods

 in this class from our C code routines */

 saveQDViewObjectForCallback(view);
 [view setContrastEnable:NO];

 /* now lets create a window and display the video data passed to us by the sequence grabber */

 err = [view doSeqGrab:[view bounds]];

 // Initialise view object

 //[view myInit];
 /* put up an error dialog to display any errors */

 if (err != noErr)

 {

 NSString *errorStr = [[NSString alloc] initWithFormat:@"%d" , err];

 int choice;

 /* now display error dialog and quit */

 choice = NSRunAlertPanel(@"Error", errorStr, @"OK", nil, nil);
 [errorStr release];

 }

 // disable stop button, pause button and text field

 [pauseButton setEnabled:NO];

 [stopButton setEnabled:NO];

 [textInput setEnabled:NO];

 gPlaybackMode = NO; // when app first starts, start in recording mode, not playback
 [self playbackModeMenuUpdate:gPlaybackMode];

 BOOL opened = NO;

 [self openGUIUpdate:opened];

 [openMovieMenuItem setEnabled:NO];

 [closeMovieMenuItem setEnabled:NO];
 [saveAsMenuItem setEnabled:NO];

 [deleteSelectionMenuItem setEnabled:NO];

 [contrastMenuItem setEnabled:YES];

 [self contrastSettingsInit];

}

//////////

//

// applicationWillTerminate

//

// We'll release any objects we initialised

// in our init method.
//

//////////

- (void)applicationWillTerminate:(NSNotification *)notification

{

 [view endGrab];

[gLastInsertTime release];

 //[gTextInputDict release];

 [gMovieFilename release];

}

@end
8.5 MyQuickDrawView.h

//////////

//

//
File:

MyQuickDrawView.h
//

//
Contains:
Interface file for our MyQuickDrawView class.

//

//
Written by:
Apple Developer Technical Support

//

//
Copyright:
© 2002 by Apple Computer, Inc., all rights reserved.

//

//
Change History (most recent first):

//

//
 <1>

5/20/02
srk

first file

//

//////////

/*

 IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple")

 in consideration of your agreement to the following terms, and your use,

 installation, modification or redistribution of this Apple software constitutes
 acceptance of these terms. If you do not agree with these terms, please do not use,

 install, modify or redistribute this Apple software.

 In consideration of your agreement to abide by the following terms, and subject to
 these terms, Apple grants you a personal, non-exclusive license, under Apple's

 copyrights in this original Apple software (the "Apple Software"), to use,

 reproduce, modify and redistribute the Apple Software, with or without

 modifications, in source and/or binary forms; provided that if you redistribute the
 Apple Software in its entirety and without modifications, you must retain this

 notice and the following text and disclaimers in all such redistributions of the

 Apple Software. Neither the name, trademarks, service marks or logos of Apple
 Computer, Inc. may be used to endorse or promote products derived from the Apple

 Software without specific prior written permission from Apple. Except as expressly

 stated in this notice, no other rights or licenses, express or implied, are granted
 by Apple herein, including but not limited to any patent rights that may be

 infringed by your derivative works or by other works in which the Apple Software

 may be incorporated.

 The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO
 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES

 OF NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING

 THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE OR IN COMBINATION WITH YOUR
 PRODUCTS.

 IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR

 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING
 IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE

 APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER UNDER THEORY OF CONTRACT, TORT

 (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS BEEN
 ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

#import <Cocoa/Cocoa.h>

#import <QuickTime/QuickTime.h>

#import "MyVideo.h"

// The bit masks for a 32 bit pixel to get each byte separately

#define kBits0to7 0x000000FF

#define kBits8to15 0x0000FF00
#define kBits16to23 0x00FF0000

#define kBits24to31 0xFF000000

#define kFrameRate 10

@interface MyQuickDrawView : NSQuickDrawView

{

 NSTimer

*gMyTimer;
// our timer for idling the sequence grabber

 SeqGrabComponent
gSeqGrab;
// the sequence grabber component
 SGChannel

gSGChanVideo;
// the sequence grabber channel component

 GWorldPtr

gPGWorld;
// gworld used for decompression

 Rect

gBoundsRect;
// rect we are drawing into

 ImageSequence
gDecomSeq;
// unique identifier for our decompression sequence
 ImageSequence
gDrawSeq;
// unique identifier for our draw sequence

 long

gImageSize;
// size of the image in our buffer to draw

 MyVideo

*gMyVideo;
// object used to create and record movie

 BOOL

gRecording;
// YES if application is in recording movie
 BOOL

gContrastEnable;
// YES if contrast function is to be applied

 long

gThreshold;
// threshold value for the contrast function

 long

lightARGB[4];
// array holding the alpha, RGB values for the

// user selected light contrast color

 long

darkARGB[4];

}

-(id)init;

-(ComponentResult)setupDecomp;

-(ComponentResult)decompToWindow;

-(void)doDecomp:(NSRect)rect;

-(void)drawRect:(NSRect)rect;

-(void) sgIdleTimer:(id)sender;

-(OSErr) doSeqGrab:(NSRect)grabRect;
-(GWorldPtr)gworld;

-(ImageSequence)decomSeq;

-(ImageSequence)drawSeq;

-(SGChannel)sgChanVideo;

-(Rect)boundsRect;

-(void)endGrab;

-(MyVideo *)myMovie;

-(void)setMyMovie:(MyVideo *)myMovie;

-(void)stopMovie;

-(void)pauseMovie;
-(void)setRecording:(BOOL)value;

-(BOOL)recording;

-(void)printBounds;

///

//

// The following functions were created by Phu Nguyen

// They enable the threshold to be set and the frame

// to be processed by the contrastFrame function
//

//

-(void)contrastFrame;

-(BOOL)contrastEnable;

-(void)setContrastEnable:(BOOL)value;

-(void)setThreshold:(int)threshold;

-(void)setThresholdColors:(NSColor *)lightColor:(NSColor *)darkColor;
@end

pascal OSErr mySGDataProc(SGChannel c,

 Ptr p,

 long len,

 long *offset,

 long chRefCon,

 TimeValue time,

 short writeType,

 long refCon);

void saveQDViewObjectForCallback(void *theObject);

8.6 MyQuickDrawView.m

//////////

//

//
File:

MyQuickDrawView.m

//

//
Contains:
Implementation file for the MyQuickDrawView class
//

//
Written by:
Apple Developer Technical Support

//

//
Copyright:
© 2002 by Apple Computer, Inc., all rights reserved.

//

//
Change History (most recent first):

//

//
 <1>

5/20/02
srk

first file

//

//////////

/*

 IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple")

 in consideration of your agreement to the following terms, and your use,

 installation, modification or redistribution of this Apple software constitutes

 acceptance of these terms. If you do not agree with these terms, please do not use,

 install, modify or redistribute this Apple software.

 In consideration of your agreement to abide by the following terms, and subject to

 these terms, Apple grants you a personal, non-exclusive license, under Apple's
 copyrights in this original Apple software (the "Apple Software"), to use,

 reproduce, modify and redistribute the Apple Software, with or without

 modifications, in source and/or binary forms; provided that if you redistribute the
 Apple Software in its entirety and without modifications, you must retain this

 notice and the following text and disclaimers in all such redistributions of the

 Apple Software. Neither the name, trademarks, service marks or logos of Apple
 Computer, Inc. may be used to endorse or promote products derived from the Apple

 Software without specific prior written permission from Apple. Except as expressly

 stated in this notice, no other rights or licenses, express or implied, are granted
 by Apple herein, including but not limited to any patent rights that may be

 infringed by your derivative works or by other works in which the Apple Software

 may be incorporated.

 The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO
 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES

 OF NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING

 THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE OR IN COMBINATION WITH YOUR
 PRODUCTS.

 IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR

 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING
 IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE

 APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER UNDER THEORY OF CONTRACT, TORT

 (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS BEEN

 ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#import <QuickTime/QuickTime.h>

#import <Carbon/Carbon.h>

#import "MyQuickDrawView.h"

#import "MyObject.h"

static MyQuickDrawView

*myQDViewObject;
// our MyQuickDrawView object

static TimeScale

gTimeScale;

// time scale for our grabbed video
static TimeValue

gLastTime;

// time value when a frame was last given to us

BOOL gContrastEnable;

@implementation MyQuickDrawView

#define BailErr(x) {err = x; if(err != noErr) goto bail;}

#define BailIfNull(x) {gSeqGrab = x; if(gSeqGrab == nil) goto bail;}
-(id)init

{

gContrastEnable = NO;

 NSLog(@"MyQuickDrawView initialised");

 return self;

}

-(void)printBounds

{

 NSLog(@"gBoundsRect = %d, %d, %d, %d", gBoundsRect.top, gBoundsRect.left, gBoundsRect.bottom, gBoundsRect.right);
}

/***

*

* FUNCTION: pauseMovie

* PURPOSE : Pauses the recording of movie

*

**/

-(void)pauseMovie
{

 gRecording = !gRecording;

}

/***

*

* FUNCTION: stopMovie

* PURPOSE : Stops the recording of movie. Calling this method finalises

* and closes the movie file.
*

**/

-(void)stopMovie

{

 gRecording = NO;

 [gMyVideo closeMovie];

}

-(BOOL)recording

{

 return gRecording;

}

-(void)setRecording:(BOOL)value

{

 gRecording = value;
}

-(void)setMyMovie:(MyVideo *)myMovie

{

 gMyVideo = myMovie;

}

//////////

//

// setupDecomp

//

// Code to setup our decompresion sequences. We make

// two, one to decompress to a gworld, and the other

// to decompress to the window

//

//////////
-(ComponentResult)setupDecomp

{

ComponentResult

err = noErr;

 Rect

sourceRect = { 0, 0 }, bounds;

 MatrixRecord

scaleMatrix;

 ImageDescriptionHandle
imageDesc = (ImageDescriptionHandle)NewHandle(0);

 PixMapHandle

hPixMap;

 /* Set up getting grabbed data into the GWorld */

 // retrieve a channelÕs current sample description, the channel returns a sample description that is

 // appropriate to the type of data being captured

 err = SGGetChannelSampleDescription(gSGChanVideo,(Handle)imageDesc);
 BailErr(err);

 /***** IMPORTANT NOTE *****

 Previous versions of this sample code made an incorrect decompression

 request. Intending to draw the DV frame at quarter-size into a quarter-size
 offscreen GWorld, it made the call

 err = DecompressSequenceBegin(..., &rect, nil, ...);

 passing a quarter-size rectangle as the source rectangle. The correct

 interpretation of this request is to draw the top-left corner of the DV
 frame cropped at normal size. Unfortunately, a DV-specific bug in QuickTime

 5 caused it to misinterpret this request and scale the frame to fit.

 This bug will be fixed in QuickTime 6. If your code behaves as intended

 because of the bug, you should fix your code to pass a matrix scaling the

 frame to fit the offscreen gworld:

 RectMatrix(& scaleMatrix, &dvFrameRect, &gworldBounds);

 err = DecompressSequenceBegin(..., nil, &scaleMatrix, ...);
 This approach will work in all versions of QuickTime.

 **************************/

 // make a scaling matrix for the sequence

 sourceRect.right = (**imageDesc).width;

 sourceRect.bottom = (**imageDesc).height;
 RectMatrix(&scaleMatrix, &sourceRect, &gBoundsRect);

//
NSLog(@"scaling sw:%d sh:%d dw:%d dh:%d",

//
 sourceRect.right, sourceRect.bottom, gBoundsRect.right, gBoundsRect.bottom);

 // begin the process of decompressing a sequence of frames
 // this is a set-up call and is only called once for the sequence - the ICM will interrogate different codecs

 // and construct a suitable decompression chain, as this is a time consuming process we don't want to do this

 // once per frame (eg. by using DecompressImage)
 // for more information see Ice Floe #8 http://developer.apple.com/quicktime/icefloe/dispatch008.html

 // the destination is specified as the GWorld

 err = DecompressSequenceBegin(&gDecomSeq,
// pointer to field to receive unique ID for sequence
 imageDesc,

// handle to image description structure

 gPGWorld,

// port for the DESTINATION image

 NULL,

// graphics device handle, if port is set, set to NULL
 NULL,

// source rectangle defining the portion of the image to decompress

 &scaleMatrix,
// transformation matrix

 srcCopy,

// transfer mode specifier

 NULL,

// clipping region in dest. coordinate system to use as a mask

 0,

// flags

 codecNormalQuality,

// accuracy in decompression
 bestSpeedCodec);

// compressor identifier or special identifiers ie. bestSpeedCodec

 BailErr(err);

 DisposeHandle((Handle)imageDesc);

 imageDesc = NULL;

 /* Set up getting grabbed data into the Window */

 hPixMap = GetGWorldPixMap(gPGWorld);

 GetPixBounds(hPixMap,&bounds);

 gDrawSeq = 0;

 // returns an image description for the GWorlds PixMap

 // on entry the imageDesc is NULL, on return it is correctly filled out
 // you are responsible for disposing it

 err = MakeImageDescriptionForPixMap(hPixMap, &imageDesc);

 BailErr(err);

 gImageSize = (GetPixRowBytes(hPixMap) * (*imageDesc)->height); // ((**hPixMap).rowBytes & 0x3fff) * (*desc)->height;
 // begin the process of decompressing a sequence of frames - see above notes on this call.

 // destination is specified as the QuickDraw port for our NSView

 err = DecompressSequenceBegin(&gDrawSeq,

 imageDesc,

 [self qdPort],
// Use the QuickDraw port for our NSView as destination!

 NULL,

 &bounds,

 NULL,

 ditherCopy,

 NULL,

 0,

 codecNormalQuality,

 anyCodec);

 BailErr(err);
bail:

 if (imageDesc)

 DisposeHandle((Handle)imageDesc);

 return (err);

}

//////////

//

// decompToWindow

//

// Decompress an image to our window (the QuickDraw port for

// our NSView)

//

//////////

-(ComponentResult)decompToWindow
{

ComponentResult err = noErr;

 CodecFlags

ignore;

// Make a scaling matrix to make the image fit into MyQuickDrawView

Rect

sourceRect = { 0, 0 }, destRect;

NSRect

qdViewRect;

 MatrixRecord

scaleMatrix;

 ImageDescriptionHandle
imageDesc = (ImageDescriptionHandle)NewHandle(0);

qdViewRect

= [myQDViewObject bounds];

destRect.top

= 0; //qdViewRect.origin.y;

 destRect.left

= 0; //qdViewRect.origin.x;

 destRect.bottom
= qdViewRect.size.height; // + 100;

 destRect.right

= qdViewRect.size.width; // - 100;

//err = SGGetChannelSampleDescription(gSGChanVideo,(Handle)imageDesc);

err = SGGetChannelBounds(gSGChanVideo, &sourceRect);

 BailErr(err);

//sourceRect.right = (**imageDesc).width; // - 100;

 //sourceRect.bottom = (**imageDesc).height; // - 100;
 RectMatrix(&scaleMatrix, &sourceRect, &destRect);

DisposeHandle((Handle)imageDesc);

 imageDesc = NULL;

SetDSequenceMatrix(gDrawSeq, &scaleMatrix);

 err = DecompressSequenceFrameS(gDrawSeq,

// sequence ID returned by DecompressSequenceBegin
 GetPixBaseAddr(GetGWorldPixMap(gPGWorld)),
// pointer to compressed image data

 gImageSize,

// size of the buffer

 0,

// in flags

 &ignore,

// out flags

 NULL);

// async completion proc

bail:

/*

if (imageDesc)

DisposeHandle((Handle)imageDesc);

*/

 return err;
}

//////////

//

// doDecomp

//

// Setup and run our decompression sequence, plus display

// frames-per-second data to our window

//

//////////

-(void)doDecomp:(NSRect)rect

{

 if(gPGWorld)

 {

 if (gDecomSeq == 0)

 {

 [self setupDecomp];

 }

 else

 {

 [self decompToWindow];

 }

 }

}

//////////

//

// drawRect

//

// Overridden by subclasses of NSView to draw the receiver's

// image within aRect. It's here we decompress our frames
// to the window for display

//

//////////

-(void)drawRect:(NSRect)rect

{

 [self doDecomp:rect];

}

//////////

//

// sgIdleTimer

//

// A timer whose purpose is to call the SGIdle function

// to provide processing time for our sequence grabber

// component.
//

//////////

-(void) sgIdleTimer:(id)sender

{

 OSErr err;

 err = SGIdle(gSeqGrab);

 /* put up an error dialog to display any errors */

 if (err != noErr)

 {

 NSString *errorStr = [[NSString alloc] initWithFormat:@"%d" , err];
 int choice;

 // some error specific to SGIdle occurred - any errors returned from the

 // data proc will also show up here and we don't want to write over them

 // in QT 4 you would always encounter a cDepthErr error after a user drags
 // the window, this failure condition has been greatly relaxed in QT 5

 // it may still occur but should only apply to vDigs that really control

 // the screen

 // you don't always know where these errors originate from, some may come
 // from the VDig...

 /* now display error dialog and quit */

 choice = NSRunAlertPanel(@"Error", errorStr, @"OK", nil, nil);

 [errorStr release];

 // ...to fix this we simply call SGStop and SGStartRecord again
 // calling stop allows the SG to release and re-prepare for grabbing

 // hopefully fixing any problems, this is obviously a very relaxed

 // approach

 SGStop(gSeqGrab);

 SGStartRecord(gSeqGrab);
 }

}

//////////

//

// doSeqGrab

//

// Initialize the Sequence Grabber, create a new

// sequence grabber channel, create an offscreen

// GWorld for use with our decompression sequence,

// then begin recording. We also setup a timer to

// idle the sequence grabber

//

//////////

-(OSErr) doSeqGrab:(NSRect)grabRect

{

 OSErr
err = noErr;

 gTimeScale
= 0;

 gLastTime
= 0;

 /* initialize the movie toolbox */

 err = EnterMovies();

 BailErr(err);

 // open the sequence grabber component and initialize it
 gSeqGrab = OpenDefaultComponent(SeqGrabComponentType, 0);

 BailIfNull(gSeqGrab);

 err = SGInitialize(gSeqGrab);

 BailErr(err);

// specify the destination data reference for a record operation

// tell it we're not making a movie

// if the flag seqGrabDontMakeMovie is used, the sequence grabber still calls

// your data function, but does not write any data to the movie file

// writeType will always be set to seqGrabWriteAppend

 err = SGSetDataRef(gSeqGrab, 0, 0, seqGrabDontMakeMovie);
 BailErr(err);

 // create a new sequence grabber video channel

 err = SGNewChannel(gSeqGrab, VideoMediaType, &gSGChanVideo);

 BailErr(err);

 err = SGSetFrameRate(gSGChanVideo, Long2Fix(kFrameRate)); // set frame rate
 gBoundsRect.top
= grabRect.origin.y;

 gBoundsRect.left
= grabRect.origin.x;

 gBoundsRect.bottom
= grabRect.size.height; // + 100;

 gBoundsRect.right
= grabRect.size.width; // - 100;

 err = SGSetChannelBounds(gSeqGrab, &gBoundsRect);
 // create the GWorld

 err = QTNewGWorld(&gPGWorld,
// returned GWorld

 k32ARGBPixelFormat,

// pixel format

 &gBoundsRect,

// bounding rectangle

 0,

// color table

 NULL,

// graphic device handle

 0);

// flags

 BailErr(err);

 // lock the pixmap and make sure it's locked because

 // we can't decompress into an unlocked PixMap

 if(!LockPixels(GetPortPixMap(gPGWorld)))

 {

BailErr(-1);

 }

 err = SGSetGWorld(gSeqGrab, gPGWorld, GetMainDevice());

 BailErr(err);

 // set the bounds for the channel

 err = SGSetChannelBounds(gSGChanVideo, &gBoundsRect);

 BailErr(err);

 // set the usage for our new video channel to avoid playthrough
 // note: we do not set seqGrabPlayDuringRecord because if you set this flag

 // the data from the channel may be played during the record operation,

 // if the destination buffer is onscreen. However, playing the

 // data may affect the quality of the recorded sequence by causing frames
 // to be dropped...something we definitely want to avoid

 err = SGSetChannelUsage(gSGChanVideo, seqGrabRecord);

 BailErr(err);

 // specify a data function for use by the sequence grabber
 // whenever any channel assigned to the sequence grabber writes data,

 // this data function is called and may then write the data to another destination

 err = SGSetDataProc(gSeqGrab,NewSGDataUPP(&mySGDataProc),NULL);

 BailErr(err);

 /* lights...camera... */

 err = SGPrepare(gSeqGrab,false,true);

 BailErr(err);

 // start recording!!

 err = SGStartRecord(gSeqGrab);

 BailErr(err);

 /* setup a timer to idle the sequence grabber */

 gMyTimer = [[NSTimer scheduledTimerWithTimeInterval:0.1

// interval, 0.1 seconds
 target:self

 selector:@selector(sgIdleTimer:)

// call this method

 userInfo:nil

 repeats:YES] retain];

// repeat until we cancel it
bail:

return err;

}

//////////

//

// gworld

//

// Accessor method for the gPGWorld class variable

//

//////////

-(GWorldPtr)gworld

{

 return gPGWorld;

}

//////////

//

// decomSeq

//

// Accessor method for the gDecomSeq class variable
//

//////////

-(ImageSequence)decomSeq

{

 return gDecomSeq;

}

//////////

//

// drawSeq

//

// Accessor method for the gDrawSeq class variable

//

//////////

-(ImageSequence)drawSeq

{

 return gDrawSeq;

}

//////////

//

// sgChanVideo
//

// Accessor method for the gSGChanVideo class variable

//

//////////

-(SGChannel)sgChanVideo

{

 return gSGChanVideo;

}

//////////

//

// boundsRect

//

// Accessor method for the boundsRect class variable

//

//////////

-(Rect)boundsRect

{

 return gBoundsRect;
}

-(MyVideo *)myMovie

{

 return gMyVideo;

}

//////////

//

// endGrab

//

// Perform clean-up when we are finished recording

//

//////////

-(void)endGrab

{

 ComponentResult result;

 OSErr

err;

 // kill our sequence grabber idle timer first
 [gMyTimer invalidate];

 [gMyTimer release];

 // stop recording

 SGStop(gSeqGrab);

 // end our decompression sequences

 err = CDSequenceEnd(gDecomSeq);

 err = CDSequenceEnd(gDrawSeq);

 // finally, close our sequence grabber component
 result = CloseComponent(gSeqGrab);

 // get rid of our gworld

 DisposeGWorld(gPGWorld);

}

/* -- */

/* sequence grabber data procedure - this is where the work is done */
/* -- */

/* mySGDataProc - the sequence grabber calls the data function whenever

 any of the grabberÕs channels write digitized data to the destination movie file.
 NOTE: We really mean any, if you have an audio and video channel then the DataProc will

 be called for either channel whenever data has been captured. Be sure to check which

 channel is being passed in. In this example we never create an audio channel so we know

 we're always dealing with video.

 This data function decompresses captured video data into an offscreen GWorld,

 then transfers the frame to an onscreen window.

 For more information refer to Inside Macintosh: QuickTime Components, page 5-120
 c - the channel component that is writing the digitized data.

 p - a pointer to the digitized data.

 len - the number of bytes of digitized data.

 offset - a pointer to a field that may specify where you are to write the digitized data,

and that is to receive a value indicating where you wrote the data.

 chRefCon - per channel reference constant specified using SGSetChannelRefCon.

 time
- the starting time of the data, in the channelÕs time scale.
 writeType - the type of write operation being performed.

seqGrabWriteAppend - Append new data.

seqGrabWriteReserve - Do not write data. Instead, reserve space for the amount of data

 specified in the len parameter.

seqGrabWriteFill - Write data into the location specified by offset. Used to fill the space

 previously reserved with seqGrabWriteReserve. The Sequence Grabber may

 call the DataProc several times to fill a single reserved location.

 refCon - the reference constant you specified when you assigned your data function to the sequence grabber.
*/

pascal OSErr mySGDataProc(SGChannel c,

 Ptr p,

 long len,

 long *offset,
 long chRefCon,

 TimeValue time,

 short writeType,

 long refCon)

{

#pragma unused(offset,chRefCon,time,writeType)

 CodecFlags

ignore;

ComponentResult err = noErr;

 CGrafPtr

theSavedPort;

 GDHandle
theSavedDevice;

 char

status[64];

 Str255

theString;

 Rect

bounds;

 float

fps;

 /* grab the time scale for use with our fps calculations - but this

 needs to be done only once */

 if (gTimeScale == 0)

 {

 err = SGGetChannelTimeScale([myQDViewObject sgChanVideo], &gTimeScale);

 BailErr(err);

 }

 if([myQDViewObject gworld])

 {

 // decompress a frame into the GWorld - can queue a frame for async decompression when passed in a completion proc
 // once the image is in the GWorld it can be manipulated at will

 err = DecompressSequenceFrameS([myQDViewObject decomSeq],
// sequence ID returned by DecompressSequenceBegin

p,

// pointer to compressed image data

len,

// size of the buffer

0,

// in flags

&ignore,

// out flags

NULL);

// async completion proc
 BailErr(err);

 // ****** IMAGE IS NOW IN THE GWORLD ****** //

 }

 /* compute and display frames-per-second */

 GetGWorld(&theSavedPort, &theSavedDevice);

 SetGWorld([myQDViewObject gworld], NULL);

 // If contrast function is enabled by the user, call contrastFrame
 // to process each frame individually

 if ([myQDViewObject contrastEnable])

 [myQDViewObject contrastFrame];

 TextSize(12);

 TextMode(srcCopy);

 bounds = [myQDViewObject boundsRect];
 MoveTo(bounds.left, bounds.bottom-3);

 fps = (float)((float)gTimeScale / (float)(time - gLastTime));

 sprintf(status, "fps:%5.1f", fps);

 CopyCStringToPascal(status, theString);

 DrawString(theString);

 SetGWorld(theSavedPort, theSavedDevice);
 /* remember current time, so next time this routine is called

 we can compute the frames-per-second */

 gLastTime = time;

// --

// THE FOLLOWING LINE IS TO BE DELETED

// ---

//
NSLog(@"view's width = %f, height = %f", [myQDViewObject bounds].size.width, [myQDViewObject bounds].size.height);

 if ([myQDViewObject recording])

 {

// Save GWorld into movie file

[[myQDViewObject myMovie] addGWorldToMedia:[myQDViewObject gworld]];

 }

 /* calling the display method will invoke this NSView's lockFocus, drawRect and unlockFocus methods as necessary.

 Our drawRect method (above) is used to decompress one of a sequence of frames. This method draws the image
 back to the window from the GWorld and could be used as a "preview" */

 [myQDViewObject display];

bail:

return err;

}

//////////

//

// saveQDViewObjectForCallback

//

// This routine stores a reference to our MyQuickDrawView object. We'll
// need this so we can call into methods in this class from outside the

// implementation of the class methods (specifically, from our SGDataProc

// C routine above).

//

//////////

void saveQDViewObjectForCallback(void *theObject)
{

 myQDViewObject = (MyQuickDrawView *)theObject;

}

///

-(void)contrastFrame

{

 Rect bounds;

 PixMapHandle hPixMap;

 long rowBytes, height, width, row, column, luminance;
 Ptr baseAddr;

 long *pixelPtr; // pointer to pixel to be modified

 hPixMap = GetGWorldPixMap([myQDViewObject gworld]); // pointer to frame to be processed

 HLock((Handle)hPixMap);

 LockPixels(hPixMap);

 rowBytes = GetPixRowBytes(hPixMap); // length of the row in bytes

 baseAddr = GetPixBaseAddr(hPixMap); // beginning address of frame

 GetPixBounds(hPixMap, &bounds);

 bounds = [myQDViewObject boundsRect];

 // height and width of the frame to be processed
 height = bounds.bottom - bounds.top;

 width = bounds.right - bounds.left;

 // These two for loop will process every pixel individually

 for (row = 0; row < height; row++)

 {

 for (column = 0; column < width; column++)
 {

 long R, G, B;

 // get address of pixel at co-ordinate (x,y) = (column, row)

 // ptr = starting address of image + # rows * size of row

 // + # columns * size of pixel

 // size of pixel in this case is 4 bytes (32 bit pixels)
 pixelPtr = (long *)(baseAddr + (rowBytes * row) + (4 * column));

 // these 32 bit pixels consists of 4 bytes in the following order:

 // Alpha : Red : Green : Blue from highest byte to lowest byte
 R = (*pixelPtr & kBits16to23) >> 16;

 G = (*pixelPtr & kBits8to15) >> 8;

 B = (*pixelPtr & kBits0to7) >> 0;

 // Luminance coefficients: kLumCoeffR, kLumCoeffG, kLumCoeffB

 // They have the following values: 0.30078125, 0.58984375, 0.109375
 // These coefficients add up to 1

 // Floating point arithmetic is a lot slower and inefficient compared

 // to integer arithmetic. If we scale these values by 256 then we can

 // just bitwise shift right the answer by 8 bits at the end to get the

 // same result

 // luminance = (kLumCoeffR * R) + (kLumCoeffG * G) + (kLumCoeffB * B)

 // = (kLumCoeffR*256*R + kLumCoeffG*256*G + kLumCoeffB*256*B) / 256
 // = (77 * R + 151 * G + 28 * B) >> 8

 // The max values for the RGB values is 256

 // This means max luminance is 256

 luminance = (77 * R + 151 * G + 28 * B) >> 8;

 // If pixel is darker than threshold, set to dark color

 if (luminance < gThreshold)

 {

 *pixelPtr = (darkARGB[0] << 24) | (darkARGB[1] << 16)

 | (darkARGB[2] << 8) | (darkARGB[3] << 0);

 }

 // Else pixel is lighter or equal to threshold, set to light color

 else

 {

 *pixelPtr = (lightARGB[0] << 24) | (lightARGB[1] << 16)

 | (lightARGB[2] << 8) | (lightARGB[3] << 0);
 }

 }

 }

 HUnlock((Handle)hPixMap);

 UnlockPixels(hPixMap);

}

-(BOOL)contrastEnable

{

 return gContrastEnable;

}

-(void)setContrastEnable:(BOOL)value

{

 gContrastEnable = value;

}

-(void)setThreshold:(int)threshold
{

 // User selects a value between 0 and 100 for the threshold

 // Contrast function uses a value between 0 and 255

 // gThreshold = (threshold / 100) * 255;

 gThreshold = (long)(threshold * 2.55);

}

-(void)setThresholdColors:(NSColor *)lightColor:(NSColor *)darkColor
{

 int i;

 float floatLightARGB[4] = {0.0, 0.0, 0.0, 0.0};

 float floatDarkARGB[4] = {0.0, 0.0, 0.0, 0.0};

 [lightColor retain];

 [darkColor retain];

 [lightColor getRed:&floatLightARGB[1] green:&floatLightARGB[2]

 blue:&floatLightARGB[3] alpha:&floatLightARGB[0]];

 [darkColor getRed:&floatDarkARGB[1] green:&floatDarkARGB[2]

 blue:&floatDarkARGB[3] alpha:&floatDarkARGB[0]];

 // set the light and dark colors that the user has chosen for the contrast
 for (i = 0; i < 4; i++)

 {

 // The colors provided by the colorwell are in the format NSColor

 // It provides each color component (RGB) as a float value between 0.0 and 1.0

 // What we want for the color values are 8-bit integers between 0 and 255 so we
 // scale accordingly

 lightARGB[i] = (long)(floatLightARGB[i] * 255);

 darkARGB[i] = (long)(floatDarkARGB[i] * 255);

 }

 [lightColor release];

 [darkColor release];

}

@end
8.7 MyVideo.h

//

// MyMovie.h

// Cocoa - SGDataProc

//

// Created by wilson on Tue Aug 10 2004.

// Copyright (c) 2004 __MyCompanyName__. All rights reserved.

//

#import <Cocoa/Cocoa.h>

#import <Quicktime/QuickTime.h>

#import <AppKit/AppKit.h>

#import <Foundation/Foundation.h>
#import <CoreServices/CoreServices.h>

#import <ApplicationServices/ApplicationServices.h>

@interface MyVideo : NSObject {

 //NSString *gFilename;

// movie's filename

 Movie gTheMovie;

 short gResRefNum;

 Track gTheTrack;
 Media gTheMedia;

 Rect gTrackFrame;

 // For compression use

 long gMaxCompressedSize;

 Handle gCompressedData;

 Ptr gCompressedDataPtr;

 ImageDescriptionHandle gImageDesc;

 //CGrafPtr oldpport;

 //GDHandle oldGDeviceH;
}

-(id)init;

-(NSString *)promptMovieFilename;

- (OSErr)createMovie:(Rect)trackFrame gWorld:(GWorldPtr)theGWorld

 filename:(NSString *)myFilename;

//-(OSErr)createMovie:(Rect)trackFrame;

-(OSErr)initCompression:(GWorldPtr)theGWorld;

-(void)addGWorldToMedia:(GWorldPtr)theGWorld;
-(void)closeMovie;

-(void) myAddVideoSampleToMedia;

-(void) QTVideo_DrawFrame:(long) curSample;

+(OSStatus)myMakeFSSpec:(FSSpec *)myFSSpecPtr fromPath:(NSString *)inPath;

-(void)checkError:(OSErr)error message:(NSString *)msg;
-(double)myGetMovieSize:(NSString *)filename;

@end
8.8 MyVideo.m

//

// MyMovie.m

// Cocoa - SGDataProc

//

// Created by wilson on Tue Aug 10 2004.

// Copyright (c) 2004 __MyCompanyName__. All rights reserved.

//

#import "MyVideo.h"

@implementation MyVideo
#define BailErr(x) {err = x; if(err != noErr) return err;}

///

//

// Constants

//

///

#define kMyCreatorType

FOUR_CHAR_CODE('TVOD')
#define kMyErrorCode

-22222

// Might delete later ++

#define
kVideoTimeScale

600

#define

kNumVideoFrames
70

#define

kPixelDepth

8
/* use 8-bit depth */

#define

kNoOffset

0
#define

kMgrChoose

0

#define

kSyncSample

0

#define

kAddOneVideoSample
1

#define

kSampleDuration
60
/* frame duration = 1/10 sec */

#define

kTrackStart

0

#define

kMediaStart

0

/**
*

* FUNCTION: init

* PURPOSE : initialise this object

*

***/

-(id)init

{

 //jj =2323;

 if (self = [super init])

 {

gTheMovie = nil;

gResRefNum = 0;

 }

 return self;
}

/***

* FUNCTION: promptMovieFilename

* PURPOSE : Gets the filename of the movie to be saved

* OUTPUT : Returns the full path of the file in NSString, OR

*
 nil on error

*

**/

- (NSString *)promptMovieFilename

{

 NSSavePanel *sp;

 int runResult;

 NSString *movieFilename = nil;

 //OSErr err = kMyErrorCode;

 /* create or get the shared instance of NSSavePanel */
 sp = [NSSavePanel savePanel];

 /* set up new attributes */

 /*

 [sp setAccessoryView:newView];

 [sp setRequiredFileType:@"txt"];

 */

 /* display the NSSavePanel */

 runResult = [sp runModalForDirectory:NSHomeDirectory() file:nil];
 /* if successful, save file under designated name */

 if (runResult == NSOKButton)

 {

 NSString *tempFilename;

 NSRange range;

 tempFilename = [sp filename];

 range = [tempFilename rangeOfString:@".mov" options:NSCaseInsensitiveSearch];
 if ((range.location == NSNotFound) && (range.length == 0)) // no .mov extension

 movieFilename = [tempFilename stringByAppendingString:@".mov"];

 else

 movieFilename = [tempFilename copy];
 }

 return movieFilename;

}

- (OSErr)createMovie:(Rect)trackFrame gWorld:(GWorldPtr)theGWorld

 filename:(NSString *)myFilename

{

 OSErr err = noErr;

 FSSpec mySpec;

/*

 err = [self promptMovieFilename];

 [self checkError:err message:@"promptMovieFilename failed"];

 BailErr(err);

 */

 // Get FSSpec representation of the entered filename

// err = [self myMakeFSSpec: &mySpec fromPath: myFilename];

[MyVideo myMakeFSSpec:&mySpec fromPath:myFilename];
 [self checkError:err message:@"myMakeFSSpec failed"];

 BailErr(err);

 // 1.

 // Create and open the movie file, this call creates an empty movie which

 // references the file, and opens the movie file with write permission

 err = CreateMovieFile(&mySpec,

// FSSpec specifier

 kMyCreatorType,

// file creator type

 smCurrentScript,

 createMovieFileDeleteCurFile |

 createMovieFileDontCreateResFile |

 newMovieActive,

// movie file creation flags

 &gResRefNum,

// file ref num

 &gTheMovie);

// field to receive movie specification

 [self checkError:err message:@"Could not create movie file"];

 BailErr(err);

 // 2.

 // Create the movie track

 gTrackFrame = trackFrame;

 NSLog(@"trackFrame = %d, %d, %d, %d", trackFrame.top, trackFrame.left, trackFrame.bottom, trackFrame.right);

 gTheTrack = NewMovieTrack(gTheMovie,

// movie specifier

 FixRatio(gTrackFrame.right, 1),
// width

 FixRatio(gTrackFrame.bottom, 1),
// height

 kNoVolume);

// track volume

// NSLog(@"GetMoviesError() returns = %d", GetMoviesError());

 err = GetMoviesError();

 [self checkError:err message:@"NewMovieTrack failed"];

 BailErr(err);

 // 3.

 // Create the media for the tract
 gTheMedia = NewTrackMedia(gTheTrack,

// track identifier

 VideoMediaType,

// type of media

 kVideoTimeScale,

// time coordinate system

 nil,

// data reference, use the file associated with the movie

 0);

// data reference type

 err = GetMoviesError();

 [self checkError:err message:@"NewTrackMedia failed"];

 BailErr(err);

 // 4.

 // Establish a media-editing session

 err = BeginMediaEdits(gTheMedia);

 [self checkError:err message:@"BeginMediaEdits failed"];
 BailErr(err);

 // 5.

 // Add media samples to movie

 //[self myAddVideoSampleToMedia];

 err = [self initCompression:theGWorld];

 [self checkError:err message:@"initCompression failed"];

 return err;
}

/***

*

* FUNCTION: closeMovie

*

* PURPOSE : End media editing session and close the movie file

*

***/

-(void)closeMovie

{

 OSErr err = noErr;

 short resId = movieInDataForkResID;

 // 1. Clean up resources used by compression

 // Dealocate our previously alocated handles

 if (gImageDesc)

 {

DisposeHandle ((Handle)gImageDesc);

 }

 if (gCompressedData)

 {

DisposeHandle (gCompressedData);

 }

 if (gResRefNum)

 {

// 2. End media editing session

err = EndMediaEdits(gTheMedia);

[self checkError:err message:@"EndMediaEdits failed"];

// 3. Add Media into track and close movie file

err = InsertMediaIntoTrack(gTheTrack,

kTrackStart,

kMediaStart,

GetMediaDuration(gTheMedia),

fixed1);

NSLog(@"media duration = %d", GetMediaDuration(gTheMedia));

[self checkError:err message:@"InsertMediaIntoTrack failed"];

err = AddMovieResource(gTheMovie,

 gResRefNum,

 &resId,

 nil);

[self checkError:err message:@"AddMovieResource failed"];

// Close the movie file

err = CloseMovieFile(gResRefNum);

[self checkError:err message:@"CloseMovieFile failed"];

// Free any memory being used by a movie, including the

// memory used by the movie's tracks and media structures.

DisposeMovie(gTheMovie);

err = GetMoviesError();

[self checkError:err message:@"DisposeMovie() failed"];

//NSRunAlertPanel(@"Error", @"DisposeMovie() in MyVideo", @"OK", nil, nil);
 }

}

-(OSErr)initCompression:(GWorldPtr)theGWorld

{

 OSErr err = noErr;

 err = GetMaxCompressionSize(GetPortPixMap(theGWorld),
// Handle to the source image

&gTrackFrame,

// bounds

kMgrChoose,

// Let ICM choose color depth

codecMinQuality,

// desired image quality

kJPEGCodecType,

// compressor type

(CompressorComponent)anyCodec,
// compressor identifier

&gMaxCompressedSize);

// returned size

 [self checkError:err message:@"GetMaxCompression failed"];
 // Create a new handle of the right size for our compressed image data

 gCompressedData = NewHandle(gMaxCompressedSize);

 err = MemError();

 [self checkError:err message:@"NewHandle error"];

 MoveHHi(gCompressedData);

 HLock(gCompressedData);

 gCompressedDataPtr = *gCompressedData;

 // Create a handle for the Image Description Structure

 gImageDesc = (ImageDescriptionHandle)NewHandle(4);

 err = MemError();

 [self checkError:err message:@"NewHandle error"];
 return err;

}

-(void)endCompression

{

 // Dealocate our previously alocated handles

 if (gImageDesc)

 {

DisposeHandle ((Handle)gImageDesc);

 }

 if (gCompressedData)

 {

DisposeHandle (gCompressedData);
 }

}

-(void)addGWorldToMedia:(GWorldPtr)theGWorld

{

 OSErr err = noErr;

 // Use the ICM to compress the image

 err = CompressImage(GetPortPixMap(theGWorld), /* source image to compress */

&gTrackFrame,

 /* bounds */

codecMinQuality,
 /* desired image quality */

kJPEGCodecType,

 /* compressor identifier */

gImageDesc,

 /* handle to Image Description Structure; will be resized by call */

gCompressedDataPtr);
 /* pointer to a location to recieve the compressed image data */
 //NSLog(@"sample #: %d", curSample);

 [self checkError:err message:@"CompressImage error"];

 // Add sample data and a description to a media

 err = AddMediaSample(gTheMedia,

 /* media specifier */

gCompressedData,
 /* handle to sample data - dataIn */

kNoOffset,

 /* specifies offset into data reffered to by dataIn handle */

(**gImageDesc).dataSize, /* number of bytes of sample data to be added */

kSampleDuration,
 /* frame duration = 1/10 sec */

(SampleDescriptionHandle)gImageDesc,
/* sample description handle */

kAddOneVideoSample,
/* number of samples */

kSyncSample,

/* control flag indicating self-contained samples */

nil);

/* returns a time value where sample was insterted */

 [self checkError:err message:@"AddMediaSample error"];
}

/***

*

* FUNCTION: myAddVideoSampleToMedia

*

* PURPOSE : Creates video samples and add them to the media

*

***/
-(void) myAddVideoSampleToMedia

{

 GWorldPtr theGWorld = nil;

 long maxCompressedSize;

 long curSample;

 Handle compressedData = nil;

 Ptr compressedDataPtr;

 ImageDescriptionHandle imageDesc = nil;
 CGrafPtr oldPort;

 GDHandle oldGDeviceH;

 OSErr err = noErr;

 // Create a graphics world

 err = NewGWorld(&theGWorld,

 k32ARGBPixelFormat,

 &gTrackFrame,

 NULL,

 NULL,

 0);

 NSLog(@"gTrackFrame bottom = %d, %d, %d, %d", gTrackFrame.top, gTrackFrame.left, gTrackFrame.bottom, gTrackFrame.right);
 //CheckError (err, "NewGWorld error");

 [self checkError:err message:@"NewGWorld failed"];

 // Lock the pixels

 LockPixels (GetPortPixMap(theGWorld));
 // Determine the maximum size the image will be after compression.

 // Specify the compression characteristics, along with the image.

 err = GetMaxCompressionSize(GetPortPixMap(theGWorld),

/* Handle to the source image */

&gTrackFrame,

/* bounds */

kMgrChoose,

/* let ICM choose depth */

codecNormalQuality,

/* desired image quality */

kAnimationCodecType,

/* compressor type */

(CompressorComponent)anyCodec,
/* compressor identifier */

&maxCompressedSize);

/* returned size */
 //CheckError (err, "GetMaxCompressionSize error");

 [self checkError:err message:@"GetMaxCompressionSize error"];

 // Create a new handle of the right size for our compressed image data

 compressedData = NewHandle(maxCompressedSize);
 //CheckError(MemError(), "NewHandle error");

 err = MemError();

 [self checkError:err message:@"GetMaxCompressionSize error"];

 MoveHHi(compressedData);

 HLock(compressedData);

 compressedDataPtr = *compressedData;
 // Create a handle for the Image Description Structure

 imageDesc = (ImageDescriptionHandle)NewHandle(4);

 //CheckError(MemError(), "NewHandle error");

 err = MemError();

 [self checkError:err message:@"GetMaxCompressionSize error"];
 // Change the current graphics port to the GWorld

 GetGWorld(&oldPort, &oldGDeviceH);

 SetGWorld(theGWorld, nil);

 // For each sample...

 for (curSample = 1; curSample <= kNumVideoFrames; curSample++) {

// Call DrawFrame to actually do the drawing of our image

[self QTVideo_DrawFrame:curSample];

// Use the ICM to compress the image

err = CompressImage(GetPortPixMap(theGWorld), /* source image to compress */

 &gTrackFrame,

 /* bounds */

 codecNormalQuality,

 /* desired image quality */

 kAnimationCodecType,
 /* compressor identifier */

 imageDesc,

 /* handle to Image Description Structure; will be resized by call */

 compressedDataPtr);

 /* pointer to a location to recieve the compressed image data */

//CheckError(err, "CompressImage error");

NSLog(@"sample #: %d", curSample);

[self checkError:err message:@"CompressImage error"];

// Add sample data and a description to a media

err = AddMediaSample(gTheMedia,

 /* media specifier */

 compressedData,

 /* handle to sample data - dataIn */

 kNoOffset,

 /* specifies offset into data reffered to by dataIn handle */

 (**imageDesc).dataSize, /* number of bytes of sample data to be added */

 kSampleDuration,

 /* frame duration = 1/10 sec */

 (SampleDescriptionHandle)imageDesc,
/* sample description handle */

 kAddOneVideoSample,
/* number of samples */

 kSyncSample,

/* control flag indicating self-contained samples */

 nil);

/* returns a time value where sample was insterted */

//CheckError(err, "AddMediaSample error");

[self checkError:err message:@"AddMediaSample error"];

 } // for loop

 SetGWorld (oldPort, oldGDeviceH);

 // Dealocate our previously alocated handles and GWorld

 if (imageDesc)

 {

DisposeHandle ((Handle)imageDesc);

 }

 if (compressedData)

 {

DisposeHandle (compressedData);

 }

 if (theGWorld)

 {

DisposeGWorld (theGWorld);

 }

}

-(void) QTVideo_DrawFrame:(long) curSample

{

 Str255 numStr;

 EraseRect (&gTrackFrame);

 ForeColor(redColor);

 PaintRect(&gTrackFrame);

 ForeColor(blueColor);

 NumToString (curSample, numStr);

 MoveTo ((short)(gTrackFrame.right / 2), (short)(gTrackFrame.bottom / 2));

 TextSize ((short)(gTrackFrame.bottom / 3));
 DrawString (numStr);

 if (curSample == 70) {

ForeColor(greenColor);

MoveTo((short)(gTrackFrame.left + 12), (short)(gTrackFrame.bottom / 2));

TextSize((short)(gTrackFrame.bottom / 4));

DrawString("\pWhoa cool!");
 }

}

/***

*

* FUNCTION: myMakeFSSpec

* (http://developer.apple.com/documentation/Cocoa/Conceptual/

*
 CarbonCocoaDoc/Articles/CarbonInCocoa.html#//apple_ref/doc/
*
 uid/20002403/CJBHBAII)

*

* PURPOSE: Converts filename in (NSString *) into FSSpec structure

*

***/

+ (OSStatus) myMakeFSSpec:(FSSpec *) myFSSpecPtr fromPath:(NSString *)inPath
{

// NSRunAlertPanel(@"Error", inPath , @"OK", nil, nil);

 FSRef myFSRef;

 OSStatus status = noErr;

 NSFileManager *fileManager;

 BOOL result = YES;

 fileManager = [NSFileManager defaultManager];

 if ([fileManager fileExistsAtPath:inPath] == NO)
 {
// Create an empty if the file does not exist

NSLog(@"creating file");

result = [fileManager createFileAtPath:inPath contents:nil attributes:nil];

 }

 if (result)

 {

NSLog(@"inside if statement");

status = FSPathMakeRef ([inPath fileSystemRepresentation],

&myFSRef,

NULL);

if (status == noErr)

 status = FSGetCatalogInfo (&myFSRef,

kFSCatInfoNone,

NULL,

NULL,

myFSSpecPtr,

NULL);

 }

 return status;

}

-(void) checkError:(OSErr)error message:(NSString *)msg
{

 if (error != noErr)

 {

NSLog(@"Error code = %d", error);

NSRunAlertPanel(@"Error", msg , @"OK", nil, nil);

 }

}

/***

*

* FUNCTION: myGetMovieSize
*

* PURPOSE : Gets the current size (in bytes) of the movie

*

***/

-(double)myGetMovieSize:(NSString *)filename

{

 TimeValue movieDuration;

 double movieDataSize;
/*

 NSNumber *fsize;

 NSFileManager *manager;

 NSDictionary *fileAttributes;

 [filename retain];

 manager = [NSFileManager defaultManager];

 fileAttributes = [manager fileAttributesAtPath:filename traverseLink:YES];

 fsize = [fileAttributes fileSize];
 movieDataSize = [filesize doubleValue];

 [filename release];

*/

 // get the current duration of the movie

 movieDuration = GetMovieDuration(gTheMovie);

 // get the data size of the movie (in bytes)

 movieDataSize = (double)GetMovieDataSize(gTheMovie, 0, movieDuration);
 return movieDataSize;

}

@end
8.9 UserText.h

//

// UserText.h

// Cocoa - SGDataProc

//

// Created by wsyong on Thu Sep 02 2004.

// Copyright (c) 2004 __MyCompanyName__. All rights reserved.
//

#import <Foundation/Foundation.h>

@interface UserText : NSObject {

 NSTimeInterval _duration;

 NSString *_text;

}

-(void)setDuration:(NSTimeInterval)newDuration;

-(NSTimeInterval)duration;

-(void)setText:(NSString *)newText;

-(NSString *)text;
@end
8.10 UserText.m

//

// UserText.m

// Cocoa - SGDataProc

//

// Created by wsyong on Thu Sep 02 2004.

// Copyright (c) 2004 __MyCompanyName__. All rights reserved.

//

#import "UserText.h"

@implementation UserText

-(void)setDuration:(NSTimeInterval)newDuration
{

// NSTimeInterval is just a double

_duration = newDuration;

}

-(NSTimeInterval)duration

{

 return _duration;

}

-(void)setText:(NSString *)newText

{

if (_text != newText)

{

[_text release];

_text = [newText retain];

}

}

-(NSString *)text

{

 return [[_text retain] autorelease];

}

-(void)dealloc

{

[_text release];

[super dealloc];

}

@end
User input text field

Mode selection

Size of file

Playback time slider

Playback time display

Playback window

Recording window

AUTHOR

FAMILY NAME: Nguyen

GIVEN NAME: Phu Khoa

DATE 5 November 2004

SUPERVISOR Iain Murray

OPTION 	Computer Systems

GOOD

AVERAGE

POOR

EXAMINER

CO-EXAMINER

TECHNICAL WORK

REPORT PRESENTATION

INDEXING TERMS

Apple, web camera, video capturing, video processing, media player

DEGREE Bachelor of

 Engineering

ABSTRACT

The Apple iSight is the web camera created by Apple. Although there is already software created to capture the audio and video from the iSight, this software is targeted to users who have normal vision. The software resulting from this project aims to enhance the video captured from the camera such that the resulting video can be viewed by those with visual impairment. This includes being able to convert the picture into a two colour scheme, one light colour and one dark colour for high contrast and easier viewing; being able to change the contrast; and being able to zoom in and out. All this is displayed to screen in a GUI (Graphical User Interface) which is very similar to most other media players, where the user can either record what is being captured, or play back what has been saved previously.

TITLE: iView: A Classroom Aid for the Visually Impaired

Playback/Record Controls

