[image: image12.jpg]Department Of Electrical And Computer Engineering

Integration of OpenAL Audio for a Haptics Environment
By

Khee Shyang Beh

A thesis submitted for the degree of

Bachelor of Engineering in Computer Systems Engineering

[image: image13.png]

 Department Of Electrical And Computer Engineering

SYNOPSIS

OpenAL is a relatively new entity and was used as the basis for a test bed to determine the feasibility of 3D audio as a form of non visual representation. A visually impaired person is unable to navigate a graphical application to a certain degree. Audio and tactile feedback responses aim to assist navigation through non visual representations of the graphical interface. The test bed utilised OpenAL as an audio scheme to provide the audio feedback to identify objects in a graphical application. The position and nature of the objects was the main focus of identification. The identification of objects relied mainly on the audio cues received by the visually impaired user. The audio scheme was designed through the use of OpenAL for application within a haptic environment.

Khee Shyang Beh
308 Robinson Avenue
Cloverdale 6105
20-10-2006
Professor Syed Islam

Head of Department

Department of Electrical and Computer Engineering

Curtin University of Technology

Western Australia

Kent Street

BENTLEY WA 6102

Dear Professor Syed Islam

I hereby offer this thesis “Integration of OpenAL Audio for a Haptics Environment” as partially satisfying the requirements for the degree of Bachelor of Engineering in Computer Systems Engineering.

I hereby state this thesis is entirely my own work outside of where acknowledgement is given.

Yours sincerely

ACKNOWLEDGEMENTS
I would like to express my gratitude to Mr Iain Murray for his guidance and knowledge throughout the course of this project.

TABLE OF CONTENTS

11.0
INTRODUCTION

1.1
Haptics and Sound
1
1.2
Project Objectives
2
1.3
Thesis Overview
3
2.0
HAPTICS, OPENGL AND OPENAL
4
2.1
Haptics
4
2.2
OpenGL
5
2.3
OpenAL
6
2.4
Audio Haptics Applications
7
2.5
Alternative Software for Audio Environments
8
3.0
MAC OSX DEVELOPMENT ENVIRONMENT
10
3.1
Introduction to Xcode and Interface Builder
10
3.2
Xcode
10
3.3
Interface Builder
12
3.4
Familiarisation of the MAC OSX Development Environment
15
4.0
OPENAL
17
4.1
OpenAL Basics
17
4.1.1
Introduction
17
4.1.2
Elements of OpenAL
18
4.1.3
Properties of OpenAL
19
4.2
Coding with OpenAL
21
4.3
Audio Generation using Sinusoidal Waves
25
4.4
Audio effects of OpenAL
26
4.4.1
Introduction to sound and location
26
4.4.2
Stereo in the x direction
27
4.4.3
Pitch in the y direction
29
4.4.4
Muffling in the z direction
30
4.5
Implemented effects of OpenAL
31
5.0
OPENGL AND OPENAL INTEGRATION
34
5.1
Importance of OpenGL
34
5.2
Getting Started with OpenGL
34
5.3
OpenGL Implementation
35
5.4
OpenAL Integration
37
6.0
OPEN HAPTICS WITH AUDIO
40
6.1
Audio navigation of haptic environments
40
6.2
Open haptic implementation with OpenAL
40
6.3
Audio issues for haptics
41
7.0
CONCLUSIONS
43
7.1
Problems and Issues
43
7.2
Future Directions
45
7.3
Achievements
47
8.0
REFERENCES
48
9.0
APPENDICES
52
9.1
Project Code
52
9.1.1
Controller.h
52
9.1.2
Controller.m
52
9.1.3
EffectEnable.h
53
9.1.4
EffectEnable.m
53
9.1.5
MyOpenGLView.h
54
9.1.6
MyOpenGLView.m
55
9.2
Project Plan
68

LIST OF FIGURES

11Figure 3‑1: Xcode management display of classes and frameworks

14Figure 3‑2: Elements of Interface Builder

14Figure 3‑3: The Designed Interface

15Figure 3‑4: The Designed Control Values Display

22Figure 4‑1: Device, source and buffer initialisation method

23Figure 4‑2: Device, source and buffer shutdown method

24Figure 4‑3: Code for loading audio and attaching buffer

24Figure 4‑4: Source and listener position and orientation code

26Figure 4‑5: Audio Generation and addition of harmonics

28Figure 4‑6: Audio Distribution for the X-plane

32Figure 4‑7: List of OpenAL Source Effects from [4]

36Figure 5‑1: Audio Test Application

37Figure 5‑2: The Audio Monitoring Display

39Figure 5‑3: A specific setting of the application (pointer over top right object)

39Figure 5‑4: Current control values for given situation in Figure 5-3

1.0 INTRODUCTION

1.1 Haptics and Sound

In recent times, as technology advances, the arrival of more sophisticated 3D devices has allowed the virtual reality interfaces to become accessible. Interaction with a computer interface is now possible by means of touch through a haptic device and this provides possibilities for the visually impaired individuals. The presence of touch can be accompanied by audio cues to create a more complete interface for the individuals who lack the sight sense.

Traditionally the computer requires sight for the correct interpretation of the information displayed. For a visually impaired person with a reduced capacity in sight, hearing and touch are two important senses that will be relied upon when going about everyday life. Through the use of the haptic device and the audio, interaction with a computer interface is possible through hearing and touch. The haptic device is used to provide physical responses to the user and the sound is able to identify various aspects of the interface.

1.2 Project Objectives
An application to test the feasibility of 3D audio for assisting in the navigation of graphical interfaces was the main objective of the project. This application incorporated the use of OpenGL to provide visual indicators of the effectiveness of 3D audio feedbacks. The intention for the 3D audio was to integrate with a haptics environment to provide a more complete response to a visually impaired user.

Audio is a useful aid to locate objects and defining surroundings for the visually impaired individual. The objectives for the project audio to achieve were positional sound features for navigation within the 3D environment and descriptive audio features for identification of objects. The audio test bed was aimed for integration with a haptics environment.
The haptic environment constituted a three-dimensional area of space and sound variations for all three directions were required. These sound variations would indicate the general position of the object in terms of the three directions. The sound variations were fully controlled by the mouse location or in the case of the haptic device, the pointer location. This method of sound manipulation can also be applied to graphs and thereby can be used to provide information by indicating the path that a line graph takes.

The audio produced from the code was for the purpose of enhancing the interaction between the individual with the interface. The use of audio brings the extra dimension of hearing the object on the interface rather than just being able to feel it.
1.3 Thesis Overview

The thesis will be structured in a way as to convey the methods that were undertaken during the project work. The chapters will be structured as follows:

Chapter 2 firstly provides a background of haptics, OpenGL and OpenAL. Chapter 3 will introduce the development environment that was used for creating and coding the audio testing application.
Chapter 4, 5 and 6 covers the actual OpenAL implementation and its integration with the OpenGL. Chapter 4 covers the OpenAL and the properties within its API that can be used to create the positional sound. The properties that were used in the OpenGL/OpenAL application will also be outlined. Chapter 5 defines the usage of OpenGL to test the audio responses from the graphical interface. This chapter also covers how the OpenGL integrated with OpenAL. Chapter 6 will define the integration of OpenAL within a haptics application.

Chapter 7 outlines the problems faced and future directions that this project may take.

2.0 HAPTICS, OPENGL AND OPENAL

2.1 Haptics
Audio haptics is a relatively new and emerging field within current technology due to its absence from many modern appliances. It is aimed at individuals who are limited with their visual capacity and would seek to encourage them to actively participate in the operation of such devices. Audio is a major source of information for the visually impaired and its ability to convey different aspects of an interface to the individual makes it a welcome addition to the haptics technology.

Early haptic devices did not incorporate the use of sound but rather they relied upon the feedback from the device to provide information to the user. These devices included the servo-manipulator and the exoskeleton [5], which did not require any audio feedback but relied upon physical feedback. The servo-manipulator was intended for moving the mechanisms within a plane such as the rudders and the elevators [6]. Having this system within a plane removes the characteristic shake when the plane has reached a critical point and is about to stall. A mechanism has been introduced to replicate this shake to provide the physical feedback to the pilot, and thereby providing notification of the current situation. Exoskeletons were devices that allowed the human being to move heavy loads that would not normally be possible. This is made possible by the haptic responses within the exoskeleton from the user movements. These early forms of haptic feedback were prominent in the mechanical devices.

As technology progressed, the introduction of haptics into computers was inevitable. Virtual reality is a form of haptic where movements received from the devices would be reflected by the display. The haptic devices were mostly in the form of gloves that received the input through the movement of the hands. The effect these gloves have would be the most relevant to that of the project. Provided that audio becomes available then there is a degree of interaction with an interface with the presence of sound.

The basis of virtual reality allows for a creation of a simulator for a real life operation. Surgery has been able to take advantage of the possibilities that haptics has to offer. The chance to perform a risky operation as a simulation will allow for a familiarity of the procedure to be attained.

2.2 OpenGL

OpenGL was released in 1992 [10] and has since been used in many applications requiring two dimensional (2D) and three dimensional (3D) graphics. Its popularity was due to its portability over all the major computing platforms and its graphics rendering capabilities. “OpenGL fosters innovation and speeds application development by incorporating a broad set of rendering, texture mapping, special effects and other powerful visualization functions.” [10]. These aspects of OpenGL allowed for its use within a variety of different applications.
OpenGL, having been widely used, has been covered extensively in books and on the internet [10]. This allows for information to be easily obtained through documentation [10]. Sample code and coding conventions can be easily accessed by programmers to assist with the development of applications.

Although OpenGL has existed for about 15 years, it is a dynamic standard that changes with the technological advances. “Formal revisions occur at periodic intervals, and extensions allowing application developers to access the latest hardware advances through OpenGL are continuously being developed.” [10]. These changes have only been added to the OpenGL core once they have been recognised and accepted by the wider programming community. OpenGL has been able to take advantage of the latest hardware due to its evolution.
2.3 OpenAL

The OpenAL standard has had a relatively short existence as it was created in 1999 by Loki Software. Initial development had begun in late 1999 but it was not released until early 2000. This first version was named OpenAL 1.0 but has since been revised to a version 1.1. OpenAL was originally created to comply and match the coding conventions of OpenGL. OpenAL can be referred to as “an audio API complimentary to OpenGL” [7]. Like OpenGL, the OpenAL was made to allow for cross platform implementation. The company that developed this form of audio had shut down but the OpenAL project has been carried on through the open source community. Version 1.1 was revised and documented in 2005.

2.4 Audio Haptics Applications

Audio haptics has been implemented in applications for different purposes. One purpose was to use haptics and an interface to provide feedback for the user to improve their motor skills [8]. This incorporated the use of audio to enhance the learning experience. The audio was used to act as an indicator of location by applying beats and reverb to the sound. Two sinusoids could be used to vary the beat frequency to indicate proximity. The reverb was an alternative method where the sound would produce a late reverb and then another direct sound [8]. The proximity was determined by the difference in volumes between the reverb and the next sound. The louder the next sound was when compared to the late reverb, the closer the pointer was to the object. The difference between the amplitude of the sound and the reverb would vary with distance. This application of haptics is not aimed at visual impaired individuals.

An application for vision impaired or non visual representation was investigated in an article available from Certec [9]. The importance of this investigation related to the navigation within a non visual environment. It emphasised that when using a single pointer for interaction with the interface, it was difficult to pin point the objects within the display. The need for forces to guide the user to specific objects became necessary. Audio was used in this application to compliment the haptic feedback. It was found that using an attractive force allowed the user to better navigate the interface.
A different article from Trace Center [1] also focused on the integration of audio with haptics to assist visually impaired individuals in the navigation of graphical interfaces. These techniques differed to those summarised in the previous article. The Certec article defined techniques for navigating an unknown space but the Trace Center article [1] had a greater focus on the communication of information to the user. The techniques used within the article related to the combination of auditory and verbal feedback. Verbal feedback was necessary for the description of the object elements on the screen. The project application is more similar to the application described by Certec but the Trace Center article defined some future directions that the project may take.
2.5 Alternative Software for Audio Environments
There are applications available on the web for creating audio environments. The SLAB Spatial Audio Renderer [15] is one such program that allows the user to configure a 3D environment with audio sources. These audio sources would be rendered in a manner that described their locations. The audio outputs would be distinct and resemble a 3D audio environment.
MathTrax is an application for describing a mathematical plot by use of audio. It is available from the NASA mathematics website [20]. The audio description aspect is most interesting to the project as it is one of the desired functions for the OpenAL audio. MathTrax operates at a two dimensional level so it does not consider the depth of the object. The distinguishable aspect of MathTrax is the audio variations due to the changes in the y direction. The change between the left and right channels of the audio is insignificant as most graphs tend to run left to right. The left and right channels of audio output become important when it is required to describe radial graphs.

MathTrax uses a term called sonification to describe the manner that it describes the graphs. Sonification can be defined as non speech audio that is used to communicate the information regarding the graph to the user. A Maths Description Engine software library is used to determine the audio output based on the graph. The OpenAL part of this project will not take this approach but rather describe objects due to their locations. This positional sound can be applied to graph objects and define their appearance with the assistance of a haptic device.
3.0 MAC OSX DEVELOPMENT ENVIRONMENT

3.1 Introduction to Xcode and Interface Builder

The development environment used to create the sound scheme demo application consisted of the Xcode development application along with Interface Builder. Xcode is the application used to code and create applications. The functionality of the application is predominantly created using Xcode but Interface Builder can be used to assist in this process. The actual interface that forms the basis of the display does not have to be created from scratch due to the presence of Interface Builder. The actions within the application such as changes to the text boxes and various control elements can be added and linked using Interface Builder. These elements can be created into files within Xcode with all the declarations and methods. The framework of the files is already present so all that is needed is to add the code for the desired function.

3.2 Xcode
The Xcode application on the MAC OSX is generally a tool that is used at all stages of code development. It is used for writing the code, linking the appropriate files and frameworks and compiling and executing the code. There a vast number of available frameworks within the Xcode framework library but the ones of concern to this project are OpenGL and OpenAL. The Cocoa framework is already available when the project was first created as a Cocoa application.
Figure 3-1 displays the Xcode graphical user interface. This is where the classes, frameworks and resources are listed and can be accessed from. The classes are the files that contain the functional code of the application. The frameworks are the libraries that need to be included for a specific function to be applicable such as the OpenGL or OpenAL frameworks. The resources are the files regarding the user interface and this is where Interface Builder can be accessed from Xcode.
[image: image1.png]
Figure 3‑1: Xcode management display of classes and frameworks
3.3 Interface Builder
Interface Builder takes a graphical approach to producing the display whereby many aspects; functions or interactions can be added to the window with ease. The application allows for the layout to be created in the manner that the developer is able to see what the final product would look like upon compilation. Some examples of the tools available to the developer include text boxes, slider bars and check boxes. These were all used within the demonstration program that was coded during the project.

Another function that Interface Builder provides to the overall project is the method by which it handles the links between the classes. There are actions and outlets within each class that are used to control the included features. These features refer to the tools that are available for use. Classes that were created for handling the features can be linked to provide functionality to the program. For applications that consist of many classes, Interface Builder makes it easier to manage the interactions between each of these classes.

The Interface Builder application is directly linked to Xcode and can be accessed at any time from the Xcode’s graphical user interface. Access to Interface Builder is available through the mainmenu.nib resource.
Figure 3-2 shows the Interface Builder main interface. This is where the elements of Interface Builder can be accessed and managed. The window class defines the display and any additional classes will be added to the instance view. Outlets and actions can be created using the NSInspector view but the links have to be made from this view. A rule to follow when connecting the outlets and actions is to consider the direction that they are required to operate in. Outlets are to be connected from the controller class to the element that will output the data such as a text box. Actions are connected from where the action has occurred to the location where the effect of the action takes place.
For example, figure 3-3 shows the designed interface for the 3D sound scheme demo application and it has used sliders in the right side of the screen. These sliders were actions so the connection was made from the sliders to the OpenGL view, where the code for managing these actions was found. The textboxes to the right of the sliders were outlets so the connection was made from the OpenGL view to the textboxes.

The connections are not limited within the same class as figure 3-4 shows a display for monitoring the control values for the audio. This was an additional panel and was created as another instance titled Panel. Actions and outlets can be connected between the Window and Panel class instances. The control values were received from the OpenGL view and they were displayed in the Panel display.
[image: image2.png]
Figure 3‑2: Elements of Interface Builder
[image: image3.png]
Figure 3‑3: The Designed Interface

[image: image4.png]
Figure 3‑4: The Designed Control Values Display
3.4 Familiarisation of the MAC OSX Development Environment

The MAC OSX development environment was readily available for designing and coding applications. It was due to this that the MAC OSX operating system was chosen as the development environment for this project. The two development applications were relatively easy to become accustomed to. It is recommended for those, who have not dealt with the operating system and the development software, to access the large amount of sample code and tutorials available on the Apple developer site. Each reference dealt with a different aspect of coding design with the MAC OSX so there were a variety of tools and functions to be familiarised with.

The tutorials, which were available from the Apple Developer website [12] used simple applications to demonstrate coding with Cocoa Each tutorial was focused on a different area so it would be necessary to work through a number of them before getting a better understanding of the Cocoa structure.
For this project, there were a number of tutorials that were accessed. These tutorials covered the mouse implementation, timer, actions and outlets. These elements formed the basis of the graphical user interface that was created for the sound scheme application.
4.0 OPENAL
4.1 OpenAL Basics

4.1.1 Introduction

OpenAL is an open source coding library used for creating and integrating audio into graphical applications. OpenAL in conjunction with OpenGL was used within the project to produce an audiovisual application. The availability of graphic rendering in a 3D environment has demanded for the existence of an audio library that is capable of audio outputs within this environment. OpenAL is suited to producing these audio outputs and managing the changes within the 3D audio environment.
The OpenAL library was developed for cross platform application and this made it a good choice for implementing the audio for haptics. The code written using OpenAL can be conveniently used in applications on many of the major platforms.

From the OpenAL.org website, a list of platforms currently with a working OpenAL implementation is available. These include Macintosh OS 8/9, Macintosh OS X, Linux, BSD, Solaris, IRIX Windows, Microsoft Xbox and the Microsoft Xbox 360.

4.1.2 Elements of OpenAL

OpenAL consists of three fundamental elements for the audio functions. These elements are used to create an audio environment. The three elements are the listener, source and buffer.
The buffer is used to store the audio sample from an input file or a generated array. Multiple buffers can be used to store various audio samples. The buffer is then attached to the source. The source is the physical element that plays the audio sample within the 3D audio environment. The listener is the physical element for receiving the audio within the environment.

Both the listener and the source need to be positioned in the 3D environment so their locations have to be specified. In addition to the location, the listener also has an orientation specified. The source does not require this orientation as the audio will be played equally in volume in all directions within the 3D space. The listener is sensitive to the direction that it receives the sound so that stereo sound becomes possible.
The listener is described by the direction it is facing as well as a vector that is designated as ‘up’. This extra vector is important due to the fact that in a 3D space, there can be different interpretations of the directions. The up direction could be towards the top of the 3D space or it could point in any arbitrary direction. Defining this direction for the listener removes the confusion regarding the reception of audio.

For example, the listener is facing into the screen space within the 3D space with the ‘up’ vector set as pointing to the top of the screen then all sources to the right will appear louder in the right speaker and the same case for the left side. This is all from the user’s perspective but if the listener was set with the ‘up’ vector as pointing to the bottom of the screen then the audio would be reversed. The sound levels from each speaker would be swapped as the sources to the right of the listener from the user’s perspective would be seen as being positioned to the left from the listener viewpoint.

For the purposes of the project, the listener was made to have an ‘up’ vector pointing to the top of the screen for simplicity. Different orientations of the listener are more useful in other applications, one being a flight simulator where the point of audio reception is dynamic.
4.1.3 Properties of OpenAL

The following sections provide a list of OpenAL commands used in the project. The properties that were used have a short description of their purpose.
AUDIO LISTENER MODIFIERS

AL_GAIN

This modifier controls the overall volume of the audio outputs. The argument for this command is positive where 1.0 defines the current sound level. Less than 1.0 decreases the volume and greater than 1.0 increases volume. There is a limit to the amount of gain that can be applied to the audio output. The volume of the audio will never exceed the maximum so if the original sound is at the maximum level then no increase will be observed using this property. Only decreases in volume can be observed when the value of AL_GAIN is less than 1.0.
AL_POSITION

The position of the listener at a location within the display is given by the x, y and z coordinates. These are given as normalised values where the extremities of the screen are defined by the values of -1.0 and 1.0.
AL_ORIENTATION

The orientation is given as a set of two direction vectors. One direction represents the forward position and the other defines the up direction. These two directions are essential in getting the specific orientation of the listener in the 3D environment. The orientation effectively divides the audio environment into two halves. This is to determine the amount of sound that can heard from the left and right audio output from the audio sources.
AUDIO SOURCE MODIFIERS

AL_PITCH

This controls the pitch of the audio. Positive values are used to vary the audio whereby values greater than 1.0 produce sounds of a higher frequency and values less than 1.0 produce low frequency tones.
AL_POSITION

This defines the location of the audio source. The audio source location is specified by the x, y and z coordinates.

AL_LOOPING

This controls whether the audio sample will be repeated endlessly or not. This is a status and therefore receives either a one or zero input.

ACTIONS

ALSOURCEPLAY

This command plays the audio. The audio must be attached to the source and the source to the buffer.

ALSOURCESTOP
This command stops the audio. This allows for other sources to be attached so it can be played
4.2 Coding with OpenAL
There is a common set of code which can be found in OpenAL coding. This code constitutes the initialisation process of the OpenAL device and the audio elements such as the buffers, sources and listeners. The audio device used for the sound outputs is usually set by the code in figure 4-1.

ALenum error;

ALCcontext *newContext;

ALCdevice *newDevice;

// Set the device, NULL meaning default device

newDevice = alcOpenDevice(NULL);

//Create context(s)

newContext=alcCreateContext(newDevice, NULL);

//Set active context

alcMakeContextCurrent(newContext);

// Clear Error Code

alGetError();

// Create two OpenAL Source Objects

alGenSources(2, alSource);

if(alGetError() != AL_NO_ERROR)

{

printf("Error generating sources! \n");

exit(1);

}

// Create two OpenAL Buffer Objects

alGenBuffers(2, alBuffer);

if((error = alGetError()) != AL_NO_ERROR)

{

printf("Error Generating Buffers: ");

exit(1);

}

Figure 4‑1: Device, source and buffer initialisation method
The declarations were made and the device for audio outputs was selected using alcOpenDevice. ‘NULL’ was used in this case because it refers to the default audio device but this can be replaced with an actual 3d audio device such as direct3dsound. These devices are superior to the generic types as they have been designed with 3d audio features. OpenAL is able to take advantage of these features.
Following the initialisation of the device, the error code was cleared so that it currently returns no error. The two pieces of code after this were used to generate the number of buffers and sources required by the application. The error code was checked both times to exit the application upon an error.
Upon exiting an OpenAL application, a shutdown method was required to close the device and audio outputs. This was encountered during the project where the audio would continue to be played after the application window had been closed. The code is shown in figure 4-2.

ALCcontext
*context = NULL;

ALCdevice
*device = NULL;

// Delete the Sources

alDeleteSources(2, alSource);

// Delete the Buffers

alDeleteBuffers(2, alBuffer);

//Get active context

context = alcGetCurrentContext();

//Get device for active context

device = alcGetContextsDevice(context);

//Disable context

alcMakeContextCurrent(NULL);

 //Release context

alcDestroyContext(context);

//Close device

alcCloseDevice(device);

Figure 4‑2: Device, source and buffer shutdown method
A method was used for the generation and attachment of the audio to a buffer. The generation of the audio will be covered in the next section. Attaching each audio to each buffer required the following line of code where the variables need to be specified. The arguments were in the form of buffer, audio format, audio sample, length of sample and sampling rate. The first line of code in figure 4-3 demonstrates this format.
alBufferData(alBuffer[i], AL_FORMAT_MONO16, O, L, SR);

alSourcei(alSource[i], AL_BUFFER, alBuffer[i]);

Figure 4‑3: Code for loading audio and attaching buffer
Methods for the initialisation of the source and listener would also be required. The source and listener were to be placed in the 3D audio environment so their location had to be specified. Before the source could be positioned, the buffer had to be attached first using the following line of code. The process of attaching the buffer to the source is shown as the second line of code in figure 4-3.

alSource3f(alSource[0], AL_POSITION, 1.0f, 0.0f, 0.0f);

float vec[6];

// Set the directional vectors of the listener

vec[0] = 0;

// Forward vector x value

vec[1] = 0;

// Forward vector y value

vec[2] = -1;

// Forward vector z value

vec[3] = 0;

// Up vector x value

vec[4] = 1;

// Up vector y value

vec[5] = 0;

// Up vector z value

// Set current listener position

alListener3f(AL_POSITION, 0.0f, 0.0f, 0.0f);

// Set current listener orientation

alListenerfv(AL_ORIENTATION, vec);

Figure 4‑4: Source and listener position and orientation code
The source and listener positions were set by entering the desired x, y and z coordinates but the listener also required an orientation vector. The orientation vector was an array of six values. The first three values provided the direction that the listener was pointed towards and the second set of three values gave the direction that the top of the listener pointed towards. These were also given as x, y and z coordinates. The positions and orientation were implemented using code in figure 4-4.

This initialisation structure was largely from the OpenALExample sample code [13] available on the Apple developer site. The code was altered to suit the needs of the project application. The actual implementation of the audio scheme was coded independently.
There are online sources of OpenAL sample code that can assist in understanding the structure of coding. These can be used to observe the audio output variations due to changes in the listener and sources. Some tutorials can be found from Edenwaith [14] and Devmaster [17].

4.3 Audio Generation using Sinusoidal Waves

The audio to be used within this application was generated using sinusoids. This method was taken from a forum discussion on generating sound in low level [2] as it suited the requirements of the project. The actual code that was discussed was a variation from a Delphi audio generation tutorial [3]. The generation of the audio involved using the segment of code in figure 4-5.

// Repeat this code for Hz = 12000 and Hz = 16000

Hz = 8000;

F =(2*pi*Hz)/SR;

for (T = 0; T < L; T ++)

{

O1[T]=(A*sin(F*T));

}

// After the three audio samples are generated using the above method

// then they can be added

O[T] = (O1[T] + O2[T] + O3[T]) / 3;

Figure 4‑5: Audio Generation and addition of harmonics
The code shown in figure 4-5 represented the generation of one audio where it can be used as one harmonic of the overall audio output. Two more audio samples were generated with frequency values of 12 000 Hz and 16 000 Hz. These were added and divided by the number of samples as follows to return the final audio sample. There were some issues with this method of audio generation and they were discussed in chapter 7.

4.4 Audio effects of OpenAL
4.4.1 Introduction to sound and location

OpenAL was used to introduce sound effects to an OpenGL application to identify the location of the object. The sound controls were applied to three-dimensional space. The sound output varied with the movement of an object in the x, y and z directions. The audio intended to provide an indicator of the general location of an object within these three planes. Each of the planes were to produce distinct changes in the audio output identify the direction and location of the object
4.4.2 Stereo in the x direction

The x direction represented the left and right directions from the user’s point of view. This was controlled through the ratio of sound through the left and right channels of the audio output. The method of sound output to simulate these conditions included the use of both the listener and the audio source buffer. The location of the audio source buffer was attached at a point in the 3-D space either to the left or the right of the listener. This was able to simulate the condition of sound to be produced from either the left or right speaker. When the object was on the left half of the screen then the audio output was only from the left speaker. When on the other half of the screen, audio output was only from the right speaker. The audio was played exclusively from one speaker. To introduce a level of realism to the audio, another audio source buffer was required.

The second audio source buffer eliminated the need to alternate the location of the buffers on either side of the listener. This method incorporated the use of changing the magnitude of the output from each speaker. The realism of the audio that was desired revolved around the fact that audio should not immediately switch sides but rather blend seamlessly between the left and right speakers. In practice this was achieved by changing the gain of the audio in an inverse proportion between the two buffers. This can be visualised by the diagram shown in Figure 4-6.
[image: image5]

Figure 4‑6: Audio Distribution for the X-plane
The values for the gain were decided to fall between the values of zero and one. This represented the normalised values for the control of the audio sound level. Given that the generated sound signal had been configured to be at the maximum amplitude, any change to gain over the value of one would not be noticed. It was not possible to increase the amplitude beyond the maximum value that it had been set to.

Figure 4-6 shows that the audio was played exclusively on one speaker when the target object was at the left or right extremities of the screen. There was an equal input from both audio buffers at the centre of the screen.

Sound in reality does not follow the amplitude gain as shown in Figure 4-6. This is due to the logarithmic nature of sound. For the purpose of this project, it was decided that the sound should be left as linear. The logarithmic nature of the sound had been implemented during the testing period but the differences in the audio were minimal. Further testing of this would be required to verify the audio amplitudes for these two given orientations. This issue will be investigated in chapter 7.

4.4.3 Pitch in the y direction

The y direction described the traditional vertical positions of an object. The sound effect chosen for this plane of movement had to differ from the one used for the x direction. This was to eliminate the confusion regarding the movement of the object. The pitch of the sound was changed with respect to the vertical position of the target object. This would be represented by higher pitch audio for objects that are located towards the top of the screen. Lower pitch audio represented a location closer to the bottom of the screen.

The control of this audio aspect was done through the use of AL_PITCH. This command received an input for the value of y as a modifier and transformed the audio output accordingly. The y value was the only variable in setting the pitch so the requirement for this sound effect was to track vertical position. The vertical position were tracked and returned with higher values for locations towards the top of the screen and lower values for those towards the bottom of the screen.

A panel for displaying the values of the given y location was added to track the status of the pitch change. A value of one determined that the audio output would be at the same pitch as the source generator. The effect of the pitch variable was monitored through the panel.
4.4.4 Muffling in the z direction

The z direction was used to describe the depth position of the object. This direction determined the distance that the object was situated into the screen. Traditionally the positive z direction was considered to be out of the screen but for the case of this project, it was the opposite case. The development platform resulted in a positive z direction being into the screen so all z directional references were taken to be this case.

The z direction allowed for an object to be placed in three-dimensional space. A suitable sound scheme was required to determine the depth distance of the object. The sound effect that represented movement in the z plane was decided to be a change in the amplitude or gain of the audio output. This represented the fact that sound appeared quieter when the object was further into the screen (positive z value). Alternately the sound was louder when the item was closer to the screen (negative z value).

The first implementation for this sound scheme produced a simple change in the volume of the audio output. There was no realism present in this sound scheme. In reality for sound to travel over a greater distance would mean that it is travelling through air and distortion would be introduced in the process. A PowerPoint presentation from Scott Selfon [19], Xbox senior audio specialist of the Xbox Advanced Technology Group, contained some information of the effect of “muffling”. Not only does sound attenuate due to distance but it will appear “muffled” due to the fact that air acts a low pass filter. This aspect of audio behaviour at a distance was chosen as the scheme for the z direction.
Muffling of sound was similar to passing sound through a low pass filter. Due to the audio output being constructed using harmonics, a low pass filter was introduced to the code without additional mechanisms. The idea of a low pass filter was to stop the high frequencies and pass low frequencies. Removing harmonics from the audio output simulated the low pass filter effect. The higher frequency harmonics were phased out as the object moved further into the screen, to a maximum z value of 1.0

This method of implementation for a low pass filter reduced the flexibility of the code to apply to a range of sounds. In this case the frequencies of the sound were known entities so a system for sorting the sound harmonics became an unnecessary activity.

4.5 Implemented effects of OpenAL

The effects that were used in the implementation of 3D positional sound can be reduced to pitch and gain. The gain was used in the x plane and the pitch was used in the y plane. Z plane effects were produced by modified ratios of the harmonics. High frequency harmonics were made less influential on the audio output when the object moved further into the screen. The low frequency harmonics were not modified as this would simulate the effects of a low pass filter.

[image: image6.emf]
Figure 4‑7: List of OpenAL Source Effects from [4]
There were a number of options that could be used to represent the movement through the 3D environment. A list of audio effects can be seen in Figure 4-2. Out of these effects it was decided to keep the audio scheme simple. Some of the other options were effects were not ideal for the project. OpenAL is an audio library used for 3D sound programming so some of the audio effects were better suited for advanced sound such as in gaming. The sound scheme was kept simple to allow for easy navigation of the screen. It was best to have a few aspects to control for the three planes of movements. A degree of familiarity with the sound scheme could be attained due to the limited variances in sound.

The gain of the sound was controlled using the ALGAIN command. This had to take into account that the generated sample of the sinusoidal wave was set at the maximum amplitude. This led to the decision that the gain could not increase beyond a value of 1. Any gain beyond this value would not result in an increase in the amplitude of the output audio. A quick test to confirm successful implementation of this aspect was to examine the output from each of the two speakers independently. The far left and the far right portions of the screen were tested for maximum output on one side and zero output for the other. This test would confirm the desired output level of the audio as specified in the Figure 4-1.
5.0 OPENGL AND OPENAL INTEGRATION
5.1 Importance of OpenGL
OpenGL was the chosen method for graphical rendering due to its relation with open haptics. The haptics toolkit makes use of OpenGL directly for the creation of shapes and objects within the haptics environment. Like OpenAL, OpenGL is cross platform compatible so it is able to operate under a various number of operating systems. It is constantly updated and revised by the wider community so it is able to take advantage of the latest technology. The latest version of OpenGL is 2.0.
OpenGL was a required component for this project to produce an interface for OpenAL to be demonstrated. OpenGL was used to draw a scene on the screen, whether it was a complete object or some spots on the screen. The object was then used as a reference to compare changes in the audio output. The object’s location had a large influence on the audio output so this would demonstrate the effect that moving the object had.
5.2 Getting Started with OpenGL

OpenGL is a library used for rendering objects and surfaces in 3D. It is open source and readily available for developers to use within their applications. The basic coding method for OpenGL can be split into defining the drawing area and drawing the shapes. Using Interface Builder, defining the drawing area can be done by simply adding an OpenGL view to the window. For this project, all that was required was to draw basic shapes for the audio implementation.

To understand the full functionality of OpenGL it is recommended to access the Gamedev site for their large selection of OpenGL tutorials [16]. The tutorials range from initialising the drawing area and drawing basic shapes to incorporating higher functionality such as movement within the 3D designed environment. The project application was produced with assistance from the earlier tutorials on drawing basic shapes. OpenGL development can be supported by the use of GL coding references available from the Mevis website [11].
The OpenGL implementation within this project is minimal due to the focus on the audio component. The OpenGL code written for this project was basic as it was only necessary to draw four shapes for audio implementation. The drawing area of OpenGL was not defined but rather it made use of the OpenGL view available from the Interface Builder selection of views.

5.3 OpenGL Implementation

OpenGL was used to produce an interface with 4 quadrilateral shapes on the screen. The shapes represented each of the four quadrants of the screen. They were made to be moved so that the display varied as the interface user wished, although this was an unnecessary implementation. The shapes were created for the purpose of producing isolated audio outputs. The times when the mouse cursor moved over one of the shapes, an audio output would be played. The audio output depended on which of the four block shapes that the cursor had moved over. The shapes were designated into each of the four quadrants of the screen to demonstrate the four different outputs.

OpenGL was used as it was able to be easily integrated with OpenAL code. The style of coding within both standards was similar and made it easier to become accustomed to. All the coding was performed using the Xcode development environment.
In figure 5-1, the graphical user interface of the 3D sound scheme demo can be seen. This figure depicts the interface upon execution so that all the values and settings of the checkboxes and sliders are at default. Figure 5-2 shows the other display that would also appear upon execution with no values since the audio is off to begin with. As the audio is played, the values that control the sound would be displayed accordingly.
[image: image7.png]
Figure 5‑1: Audio Test Application
[image: image8.png]
Figure 5‑2: The Audio Monitoring Display

5.4 OpenAL Integration
The OpenAL code was integrated into the project after the OpenGL part was completed. The OpenAL was able to be coded into the class where the OpenGL code existed. This is due to the OpenAL code being independent to OpenGL.

The initiation of the OpenAL elements was placed before the execution part of the application. This allowed for the sources and listener to be positioned and the attached buffers to be stored with audio. The audio device was established and ready to play the desired sounds.
The main part of the application code contained the control of the audio outputs. The audio outputs were controlled by the mouse pointer position so methods were written to receive these inputs. Mouse pointer location was given by the x and y coordinates. Due to the project being tested using the mouse, the z coordinate was not available so an alternative was added to the project. The sliders that can be seen in figure 5-3 show that they are set at different values. As the value was increased, the size of the corresponding object would also increase. The slider values represented the z coordinate and this allowed for the sound scheme for the z direction to be added.

Figures 5-3 and 5-4 show the interfaces at the same stage of execution. The pointer was directly over the top right object and this was labelled object D. The slider that corresponds to this object is Distance D. From Figure 5-3 it can be seen that the setting of the Distance D slider is at the value of -0.56. Figure 5-4 displays the values that the audio output was controlled by at that stage.
The pointer was over the top right object so it was expected that more audio was played through the right channel and this can be seen in the values for the left and right channels. The pitch control was at 1.20 that defines a location higher than the centre of the screen. The Z depth value matched the slider setting of object D so the current audio output was correct for the pointer location. As the pointer moves then the control values of the audio would change accordingly.

[image: image9.wmf]

Figure 5‑3: A specific setting of the application (pointer over top right object)

[image: image10]
Figure 5‑4: Current control values for given situation in Figure 5-3

6.0 OPEN HAPTICS WITH AUDIO
6.1 Audio navigation of haptic environments

Audio cues can be used to assist in the navigation of a haptic environment. The haptic device will provide the physical feedback covering one of the five senses, touch but the audio will be used to produce an audio feedback covering the hearing sense. For a visually impaired person, these two senses will be heavily relied upon for identification and location of objects. Integrating these two aspects into a single haptic application aims to provide an effective method of introducing areas of computing that were previously not accessible by these people.

6.2 Open haptic implementation with OpenAL

The OpenAL code should be able to fit into haptics code with ease as it does with OpenGL code. Most of the OpenAL code is independent of the functions within haptics with the only requirement being the input of the pointer locations. This would be a direct substitution of the haptics pointer for the mouse pointer from the test application. This implementation has not been completed.
The types of haptic applications that would be appropriate for implementation with OpenAL varied with the functionality attained within the audio code. The audio at the current stage of development would largely suit integration with graph objects or localised objects. The purpose of audio for graphs is in reference to describing the path that the graph takes. The positional inputs to the audio vary with the shape of the graph and would therefore result in different sounds for different graphs.
Using the haptic pointer with the gravity function, it was possible to attach to the graph object. This would allow a visually impaired user to follow the shape that the graph formed and through both tactile and audio feedback, they are able to gain a level of recognition of the object.

Within the 3D space there may be objects of interest and the audio can be used to help locate them. This can be implemented by applying an audio output upon the instance when the mouse moves over the object. The audio output will notify the user that they have found an object of interest. Attenuation of the audio is also possible to assist in the location of an object. The attenuation can define the distance that the pointer is to the object so it may be used as a guide as to the direction to move to find an object. The audio scheme can be replaced with verbal outputs to locate and define the object at the same time. This can be useful for the navigation of information interfaces. This could be likened to the voice over function that is available in the MAC OSX platform.
6.3 Audio issues for haptics

The issue of timing arises when integration of OpenAL and open haptics takes place. The OpenAL code was largely dependent on a system clock; that is it required constant tracking. Open haptics would also incorporate the use of a timer to regulate the functions within the execution. The success of implementation of OpenAL with the open haptics application would largely depend on the ability to integrate the timing of the applications. This should not pose a problem as the OpenAL code for this project could be modified to operate off the pre existing timer within the open haptics application.

The audio scheme itself has not found to be fully reliable in some circumstances. Information sources are not able to be described by the audio outputs of the project application. These information sources include any graphs or tables as these would contain specific details that are necessary for understanding. The audio scheme will only be able to describe the shape of the graphs but a voice over will be required for informing the user what the graph represents. Combining the voice over with the audio can allow the shape and representation of the graph to be known.

Tables of information would render the audio scheme useless since the information to be communicated to the user is largely literal. The voice over would be more appropriate for these situations. The audio scheme of the project would be restricted for use with objects and graphs.

7.0 CONCLUSIONS
7.1 Problems and Issues

During the course of this project, few problems arose with the majority being due to inexperience with the programming environment and tools as well as the programming language. Certain functionalities were not implemented in the application due to the failure of finding a proper method of coding them. They were replaced with simpler but less refined methods. These methods were written to reproduce the desired functionality to a degree. These include the movement of the objects around the screen, the implementation of the low pass filter and the mouse over object events to output isolated audio.
The audio generation contained a problem where the frequency specified did not match the audio output in pitch. It was expected that a higher frequency resulted in higher audio pitch but this was not the case. Different values were used to determine the effect of the frequency but the problem was not resolved. It appeared that the pitch of the audio cycled between high and low as the frequency value increased. The values for the three samples were chosen by inspection where two samples were of high pitch and the other exhibited low pitch. These audio samples were necessary for the simulation of the low pass filter and the effect of muffling.
The low pass filter has been previously explained in chapter 3.2.4 as being simulated by removing the higher frequency audio but this would only be effective in this case where the pitch of each harmonic is known. In a system where the frequency of harmonics are not known then it would not be possible to determine which of the harmonics to phase out of the signal.

Using the alternative method for replicating the effect of a low pass filter, another issue regarding the code became prominent. The method by which OpenAL attaches the audio sample to source did not allow for alterations. The source has to be stopped before a different audio sample can be attached to it. This leads to the fact that the z parameter has to be changed each time the slider is moved. Each change in the z parameter resulted in regeneration of the audio with the correct ratios of harmonic input. This tended to cause noticeable skips in the audio so this method may not be desirable for haptic implementation.
From the fact that an issue arises from the regeneration of audio then it has been brought to attention that the current method may also be flawed. The generation of the audio took place within the initialisation stage of the code but if the audio were to be flexible then it would require multiple regenerations to adapt to dynamic requirements. It may be worth the time to investigate the use of a wide range of pre defined audio that is stored in an array of buffers so that they may be accessed in the same manner as a lookup table. The drawback of this would be the increase number of buffers required for the storage.
With regard to the mouse movement and object movement, the mouse down event was linked to the mouse dragged event so that they were the actions that dictated the movement of the screen objects. When the mouse was held down then it was considered that if it were over one of the shapes then the shape would be redrawn for the mouse pointer to exist in the middle of the object. This gave the illusion that the mouse was dragging the object but in actual fact it was the object being redrawn on the screen to follow the mouse. This was a simple method that produced object movement but a better method would have been to select the object then drag/move it to its location. This was not implemented due to the conflict that would arise between the uses of the mouse dragged event.

7.2 Future Directions

There is a wide scope for future directions of this audio haptics project. The work that has been completed during the course of this project mainly used basic structures in terms of devices and sound schemes. This was done so that the result of this project would be an application that demonstrated 3D positional sound to a certain degree. This application could be used as a basis for further improvements. Such improvements would include a restructuring of the sound scheme to suit other applications and the introduction of a 3D Creative audio device to expand the capabilities 3D sound. The concept of 3D sound can be more fully realised through an audio device that has been designed to produce these outputs.

The sound scheme for the x directional plane, as previously outlined in chapter 3.2.2, could be improved. This can be achieved by using a logarithmic scaling of the sound as the control point for the audio moves to the left and right. To provide the verification for this change, it would become necessary to make use of an oscilloscope. The idea of the audio outputs within the x plane was that it would remain at constant overall output amplitude. The variations in the left and right channels are required to produce a constant total. The addition of two sound wave amplitudes would need to be investigated for this area to be implemented.
Due to the problem that may arise with the extended use of the audio for flexibility in different applications, an investigation of other methods of audio generation is required. One such method is to generate the audio separately from the application but store the audio from file to the buffer. This method was considered in passing where the audio would be generated by a simple application such as the Tone Generator [18]. This application generates an audio output of a desired frequency so it can be manipulated using OpenAL.
The object movement within the application is limited to the mouse movement. The algorithm that has been implemented was simple and was able to perform the desired action, which was to move the objects around the display. This can be improved upon by introducing a method that would control the mouse dragging of objects by way of selection. Currently the method of moving the objects involves a process of redrawing the objects very quickly on the screen in order to keep with the mouse movement. The timer for the control of this aspect was set at a very fast rate so that there are an excessively high number of instances of the screen refresh. This resulted in an inefficient system in place for object movement. Separate timers for the mouse or haptic pointer implementation and the screen redraw method would be one way to remedy this issue.
7.3 Achievements

Within this project, the majority of objectives were completed. OpenAL is a viable option for use within a haptics environment due to the success in audio navigation and the large number of platforms that are supported. The sound scheme for the location of objects within a 3D environment has been implemented into an application used for demonstration purposes. A selection of audio was created for easier identification of the direction of movement within the 3D space. These audio variations for the three planes of movement were distinguishable and would allow the sound scheme to serve its purpose of assisting navigation of a haptics environment.
8.0 REFERENCES

[1] Gregg C. Vanderheiden, “Use of audio-haptic interface techniques to allow nonvisual access to touchscreen appliances”, Trace Center College of Engineering University of Wisconsin-Madison, 2003
[online]. Available: http://trace.wisc.edu/docs/touchscreen/chi_conf.htm.

[Accessed: March 1, 2006]
[2] How to generate the sound in low level, Creative Open Source, 2005

[online]. Available: http://opensource.creative.com/pipermail/openal/2005-May/002921.html
[Accessed: March 29, 2006]
[3] Delphi Tutorials: Lesson #11 (SoftSynth Part 1), Noeska Software Language, 2003
[online]. Available: http://www.noeska.com/doal/lesson11.aspx
[Accessed: March 29, 2006]
[4] OpenAL 1.1 Programmer’s Guide, OpenAL Documentation,

[online]. Available: http://www.openal.org/documentation.html
[Accessed: April 12, 2006]
[5] Prof. Robert J. Stone, Haptic Feedback: A Potted History, From Telepresence to Virtual Reality

[online]. Available: http://www.dcs.gla.ac.uk/~stephen/workshops/haptic/papers/stone.pdf
[Accessed: May 28, 2006]
[6] Whats a Servo?, Seattle Robotics Society,
[online]. Available: http://www.seattlerobotics.org/guide/servos.html
[Accessed: May 28, 2006]
[7] OpenAL 1.1 Specification, OpenAL Documentation,
[online]. Available: http://www.openal.org/documentation.html
[Accessed: April 12, 2006]
[8] C. Muller-Tomfelde, Interaction Sound Feedback in a Haptic Virtual Environment to Improve Motor Skill Acquisition, ICAD 2004, 2004
[online]. Available: http://www.icad.org/websiteV2.0/Conferences/ICAD2004/posters.htm
[Accessed: March 1, 2006]
[9] Charlotte Magnusson & Kirsten Rassmus-Grohn, Audio haptic tools for navigation in non visual environments, Certec Department of Design Sciences, Lund University, 2005
[online]. Available:
http://www.certec.lth.se/haptics/papers/ENACTIVE05_AudioHapticToole_CMagnussonl.pdf
[Accessed: March 1, 2006]
[10] OpenGL Overview, OpenGL – The Industry’s Foundation for High Performance Graphics,
[online]. Available: http://www.opengl.org/about/overview/
[Accessed: Jun 5, 2006]
[11] GL Commands, Mevis Research, Center for Medical Image Computing
[online]. Available: http://www.mevis.de/opengl/opengl.html
[Accessed: March 22, 2006]
[12] Reference Cocoa, Apple Developer Connection
[online]. Available:
http://developer.apple.com/reference/Cocoa/index.html
[Accessed: March 8, 2006]
[13] OpenALExample Sample Code, Apple Developer Connection
[online]. Available: http://developer.apple.com/samplecode/OpenALExample/
[Accessed: March 29, 2006]
[14] OpenAL Tutorial, Edenwaith
[online]. Available: http://www.edenwaith.com/products/pige/tutorials/openal.php
[Accessed: March 29, 2006]
[15] SLAB Home Page, Human Systems Integration Division at NASA
[online]. Available: http://human-factors.arc.nasa.gov/SLAB/
[Accessed: March 15, 2006]
[16] OpenGL Sample Code and Tutorials, Neon Helium Productions
[online]. Available: http://nehe.gamedev.net
[Accessed: March 15, 2006]
[17] Programming 3D Sound with OpenAL, Devmaster.net
[online]. Available: http://www.devmaster.net/articles/openal/
[Accessed: April 12, 2006]
[18] Tone Generator, Newfreeware.com
[online]. Available: http://www.newfreeware.com/audio/76/
[Accessed: August 9, 2006]
[19] Audio Concepts in Plain English : 3D and I3DL2, Games Developers Conference
[online]. Available: http://www.gdconf.com/conference/2004.htm
[Accessed: May 17, 2006]
[20] NASA MathTrax Homepage, National Aeronautics and Space Administration
[online]. Available: http://prime.jsc.nasa.gov/mathtrax/
[Accessed: March 22 2006]
9.0 APPENDICES
9.1 Project Code
9.1.1 Controller.h
/* Controller */

#import <Cocoa/Cocoa.h>

#import "MyOpenGLView.h"

// Declarations of the actions and outlets

@interface Controller : NSObject

{

// Outlet for the GLView

IBOutlet MyOpenGLView *view;

}

// Actions for the four NSSliders

- (IBAction)setDistanceSlider:(id)sender;

@end

9.1.2 Controller.m
/* Controller for the slider actions */

#import "Controller.h"

@implementation Controller

// Each of the four NSSliders have their own method to read the value from the slider

// Value is stored and sent to the GLView for implementation

- (IBAction)setDistanceSlider:(id)sender

{

// Store slider value to a float variable distA

float dist = [sender floatValue];

int tag = [sender tag];

// Send value to the setA method in the GLView

[view set: tag: dist];

}

@end

9.1.3 EffectEnable.h
/* EffectEnable */

#import <Cocoa/Cocoa.h>

#import "MyOpenGLView.h"

@interface EffectEnable : NSObject

{

IBOutlet MyOpenGLView *view;

}

- (IBAction)xSet:(id)sender;

- (IBAction)ySet:(id)sender;

- (IBAction)zSet:(id)sender;

- (IBAction)isoSound:(id)sender;

- (IBAction)soundControl:(id)sender;

@end

9.1.4 EffectEnable.m
#import "EffectEnable.h"

@implementation EffectEnable

- (IBAction)xSet:(id)sender

{

float xStat = [sender floatValue];

[view xStatus: xStat];

}

- (IBAction)ySet:(id)sender

{

float yStat = [sender floatValue];

[view yStatus: yStat];

}

- (IBAction)zSet:(id)sender

{

float zStat = [sender floatValue];

[view zStatus: zStat];

}

- (IBAction)isoSound:(id)sender;

{

float iso = [sender floatValue];

[view setIso: iso];

}

- (IBAction)soundControl:(id)sender;

{

[view power: [sender floatValue]];

}

@end

9.1.5 MyOpenGLView.h
/* MyOpenGLView */

#import <Cocoa/Cocoa.h>

#import <OpenGL/gl.h>

#import <OpenAL/al.h>

#import <OpenAL/alc.h>

// Declarations of the variables

@interface MyOpenGLView : NSOpenGLView

{

NSPoint mousePoint ;

NSPoint mouseTrack ;

float colorIntensity ;

NSDate* startTime ;

 NSTimer* timer ;

NSPoint location;

BOOL dragging;

 NSPoint lastDragLocation;

IBOutlet NSTextField *distanceA;

 IBOutlet NSTextField *distanceB;

 IBOutlet NSTextField *distanceC;

 IBOutlet NSTextField *distanceD;

IBOutlet NSTextField *LeftChannel;

IBOutlet NSTextField *RightChannel;

IBOutlet NSTextField *Pitch;

IBOutlet NSTextField *zDepth;

}

// Declarations of the methods used in the m file

- (id) initWithCoder: (NSCoder*) coder ;

- (void) reDraw ;

- (void) dealloc ;

- (void) mouseMoved: (NSEvent *) theEvent ;

- (void) mouseDown: (NSEvent *) theEvent ;

- (void) mouseDragged: (NSEvent *) theEvent ;

- (void) mouseUp: (NSEvent *) theEvent ;

- (void) drawRect: (NSRect) bounds ;

- (void) playSound ;

- (void) movePoint ;

- (void) initOpenAL ;

- (BOOL)acceptsFirstResponder ;

- (BOOL)becomeFirstResponder ;

- (BOOL)resignFirstResponder ;

- (void) set: (int) inTag :(float) inDistance;

- (void) xStatus: (float) inStat;

- (void) yStatus: (float) inStat;

- (void) zStatus: (float) inStat;

- (void) setIso: (float) inStat;

- (void) power: (float) inStat;

- (void) awakeFromNib;

@end

9.1.6 MyOpenGLView.m
// Importing the header file

#import "MyOpenGLView.h"

// Setting the coonstants, screen height, screen width and offset of the shape

#define kScreenHeight

360

#define kScreenWidth

480

#define kOffset

0.5

// Declare the buffers and sources

ALuint alSource[2];

ALuint alBuffer[2];

// Declare the float variables

float transformX, transformY;

float zValue[4];

float gPos[4][3] = {{-kOffset, -kOffset, 0.0},

 {-kOffset, kOffset, 0.0},

 {kOffset, kOffset, 0.0},

 {kOffset, -kOffset, 0.0}
};

float statusX, statusY, statusZ, statusI, statusP;

// Declare global variables for the sound generation

#define length 1000

ALshort O[length];

// Combined sound source

ALshort O1[length];

// Sound source 1

ALshort O2[length];

// Sound source 2

ALshort O3[length];

// Sound source 3

ALint T;

// Time

ALint L;

// Length of sample

ALint SR;

// Sample Rate

int i, soundStat, playCurrent, depthStat;

// Counter

// Initialisation of the OpenAL

void InitialiseOpenAL()

{

ALenum error;

ALCcontext *newContext;

ALCdevice *newDevice;

// Set the device, NULL meaning default device

newDevice = alcOpenDevice(NULL);

//Create context(s)

newContext=alcCreateContext(newDevice, NULL);

//Set active context

alcMakeContextCurrent(newContext);

// Clear Error Code

alGetError();

// Create two OpenAL Source Objects

alGenSources(2, alSource);

if(alGetError() != AL_NO_ERROR)

{

printf("Error generating sources! \n");

exit(1);

}

// Create two OpenAL Buffer Objects

alGenBuffers(2, alBuffer);

if((error = alGetError()) != AL_NO_ERROR) {

printf("Error Generating Buffers: ");

exit(1);

}

}

// Close down the buffers and sources upon exit

void TeardownOpenAL()

{

ALCcontext
*context = NULL;

ALCdevice
*device = NULL;

// Delete the Sources

alDeleteSources(2, alSource);

// Delete the Buffers

alDeleteBuffers(2, alBuffer);

//Get active context

context = alcGetCurrentContext();

//Get device for active context

device = alcGetContextsDevice(context);

//Disable context

alcMakeContextCurrent(NULL);

//Release context

alcDestroyContext(context);

//Close device

alcCloseDevice(device);

}

// Initialise the buffers with audio

void InitialiseBuffers()

{

ALint F;

// Frequency of sample

//ALint FB;

// Feedback of sample

ALint Hz;

// Frequency in hertz of sample (cycles per second)

ALint A;

// Amplitude

L = length;

// Length of the array

A = 32760;

// Maximum amplitude value for 16bit

SR = 6250;

//Sample rate of audio

// sample 01

Hz = 8000;

F =(2*pi*Hz)/SR;

for (T = 0; T < L; T ++)

{

O1[T]=(A*sin(F*T));

}

// sample 02

Hz = 12000;

F =(2*pi*Hz)/SR;

for (T = 0; T < L; T ++)

{

O2[T]=(A*sin(F*T));

}

// sample 03

Hz = 16000;

F =(2*pi*Hz)/SR;

for (T = 0; T < L; T ++)

{

O3[T]=(A*sin(F*T));

}

// Combine the samples to produce the audio to fill the buffer

for (T = 0; T < L; T ++)

{

O[T] = (O1[T] + O2[T] + O3[T]) / 3;

}

/*/ sample O feedback

FB = 10 / (A * 25); // keep the value 10 between 0 and 100

for (T = 0; T < L; T ++)

{

O[T] = (O[T] + (FB * O[T]));

}*/

// Fill the two buffers with the same audio

for (i = 0; i < 2; i ++)

{

alBufferData(alBuffer[i], AL_FORMAT_MONO16, O, L, SR);

}

}

// Initialise the sources and set the properties.

void InitialiseSources()

{

ALenum error = AL_NO_ERROR;

alGetError(); // Clear the error

// Attach the two buffers to the two sources

for (i = 0; i < 2; i ++)

{

alSourcei(alSource[i], AL_BUFFER, alBuffer[i]);

// Loop sound continuously

alSourcei(alSource[i], AL_LOOPING,AL_TRUE);

}

// Set one source to the left and the other source to the right of the listener position

alSource3f(alSource[0], AL_POSITION, 1.0f, 0.0f, 0.0f);

alSource3f(alSource[1], AL_POSITION, -1.0f, 0.0f, 0.0f);

// Check for errors

if((error = alGetError()) != AL_NO_ERROR)

{

printf("Error attaching buffer to source");

exit(1);

}

}

// Initialise the listener position and properties

void InitialiseListener()

{

float vec[6];

// Set the directional vectors of the listener

vec[0] = 0;

// Forward vector x value

vec[1] = 0;

// Forward vector y value

vec[2] = -1;

// Forward vector z value

vec[3] = 0;

// Up vector x value

vec[4] = 1;

// Up vector y value

vec[5] = 0;

// Up vector z value

// Set current listener position

alListener3f(AL_POSITION, 0.0f, 0.0f, 0.0f);

// Set current listener orientation

alListenerfv(AL_ORIENTATION, vec);

}

@implementation MyOpenGLView

// Initialise the window with a timer

- (id) initWithCoder: (NSCoder *) coder

{

SEL theSelector ;

self = [super initWithCoder: coder] ;

// initialise the mouse position

mousePoint.x = [self bounds].size.width / 2.0 ;

mousePoint.y = 0.0 ;

// Set the time reference

startTime = [NSDate date] ;

[startTime retain] ;

// Set the method that the timer will execute

theSelector = @selector(reDraw);

// Set up the timer with the specifications

timer = [NSTimer scheduledTimerWithTimeInterval:0.005 target:self selector:theSelector userInfo:NULL repeats:YES];

[timer retain] ;

// Call to initialise the audio

[self initOpenAL] ;

return self ;

}

- (void) reDraw

{

if (statusP == 1 && statusI == 0 && soundStat == 0)

{

alSourcePlay(alSource[0]);

alSourcePlay(alSource[1]);

soundStat = 1;

playCurrent = 1;

}

// Otherwise sound is off and sound does not play

else if (statusP == 0 && soundStat == 1)

{

alSourceStop(alSource[0]);

alSourceStop(alSource[1]);

soundStat = 0;

playCurrent = 0;

}

// set to refresh display

[self setNeedsDisplay:YES];

}

- (void) dealloc

{

// Clean up the code

[timer invalidate] ;

[timer release] ;

[startTime release] ;

[super dealloc] ;

}

- (void) mouseMoved: (NSEvent *) theEvent

{

// Check the status of the window whether the sound is on

// Get the current mouse location and go to play appropriate sound

mouseTrack = [theEvent locationInWindow];

[self playSound];

}

-(void)mouseDown:(NSEvent *)theEvent

{

// mouseDown method implies the mouseDragged method

[self mouseDragged: theEvent];

}

- (void) mouseDragged: (NSEvent *) theEvent

{

// Get the mouse location

mousePoint = [theEvent locationInWindow] ;

[self movePoint];

}

-(void)mouseUp:(NSEvent *)theEvent

{

// Do nothing

}

- (void) drawRect: (NSRect) bounds

{

// Declare counter

int i;

// Convert the mouse location to X and Y values.

transformX = 2.0 * mouseTrack.x / [self bounds].size.width - 1.0 ;

transformY = 2.0 * mouseTrack.y / [self bounds].size.height - 1.0 ;

// initialise color and clear the color and depth bits

glClearColor(0, 0, 0, 0) ;

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;

// Allow for depth rendering of the shapes

glEnable(GL_DEPTH_TEST);

// Draw the shapes

for (i = 0; i < 4; i ++)

{

glLoadIdentity() ;

glTranslatef(gPos[i][0], -gPos[i][1], gPos[i][2]) ;

glBegin(GL_QUADS) ;

{

glColor3f(0.6 + 0.1 * i, 1 - 0.25 * i, 0.2 * i) ;

glVertex3f(-0.1f + 0.05 * zValue[i], -0.1f + 0.05 * zValue[i], zValue[i]*0.99) ;

glVertex3f(-0.1f + 0.05 * zValue[i], 0.1f - 0.05 * zValue[i], zValue[i]*0.99) ;

glVertex3f(0.1f - 0.05 * zValue[i], 0.1f - 0.05 * zValue[i], zValue[i]*0.99) ;

glVertex3f(0.1f - 0.05 * zValue[i], -0.1f + 0.05 * zValue[i], zValue[i]*0.99) ;

}

glEnd() ;

}

glFlush() ;

}

- (void) playSound

{

// set the left and right balance of the audio when X is enabled

float left, right, oldLeft, oldRight;

if(statusX == 1)

{

left = ((-transformX + 1) / 2);

right = ((transformX + 1) / 2);

}

else if(statusX == 0)

{

left = 0.5;

right = 0.5;

}

if (left != oldLeft || right != oldRight)

{

alSourcef(alSource[0], AL_GAIN, right);// - zValue[1]));

[LeftChannel setStringValue: [NSString stringWithFormat: @"%.2f", left]];

alSourcef(alSource[1], AL_GAIN, left);// -zValue[1]));

[RightChannel setStringValue: [NSString stringWithFormat: @"%.2f", right]];

}

// Play sound when the mouse is over the first shape (top left)

if (mouseTrack.x < ((gPos[0][0]+1.1 - 0.06 * zValue[0])*kScreenWidth /2) && mouseTrack.x > ((gPos[0][0]+0.9 + 0.06 * zValue[0])*kScreenWidth /2)

 && mouseTrack.y < ((-gPos[0][1]+1.1 - 0.06 * zValue[0])*kScreenHeight /2) && mouseTrack.y > ((-gPos[0][1]+0.9 + 0.06 * zValue[0])*kScreenHeight /2))

{

if (statusP == 1 && playCurrent == 0)

{

alSourcePlay(alSource[0]);

alSourcePlay(alSource[1]);

playCurrent = 1;

}

if (statusZ == 1 && depthStat != 0)

{

[zDepth setStringValue: [NSString stringWithFormat: @"%.2f", zValue[0]]];

for (T = 0; T < L; T ++)

{

O[T] = ((-zValue[0] + 1) /2 * O1[T] + O2[T] + (-zValue[0] + 1) /2 * O3[T]) / 3;

}

for (i = 0; i < 2; i ++)

{

if (playCurrent == 1)

{

alSourceStop(alSource[i]);

}

}

for (i = 0; i < 2; i ++)

{

alSourcei(alSource[i], AL_BUFFER, 0);

}

for (i = 0; i < 2; i ++)

{

alBufferData(alBuffer[i], AL_FORMAT_MONO16, O, L, SR);

}

for (i = 0; i < 2; i ++)

{

alSourcei(alSource[i], AL_BUFFER, alBuffer[i]);

if(statusP == 1 && playCurrent == 1)

{

alSourcePlay(alSource[i]);

}

}

depthStat = 0;

}

}

// Play sound when the mouse is over the second shape (bottom left)

else if (mouseTrack.x < ((gPos[1][0]+1.1 - 0.06 * zValue[1])*kScreenWidth /2) && mouseTrack.x > ((gPos[1][0]+0.9 + 0.06 * zValue[1])*kScreenWidth /2)

 && mouseTrack.y < ((-gPos[1][1]+1.1 - 0.06 * zValue[1])*kScreenHeight /2) && mouseTrack.y > ((-gPos[1][1]+0.9 + 0.06 * zValue[1])*kScreenHeight /2))

{

if (statusP == 1 && playCurrent == 0)

{

alSourcePlay(alSource[0]);

alSourcePlay(alSource[1]);

playCurrent = 1;

}

if (statusZ == 1 && depthStat != 1)

{

[zDepth setStringValue: [NSString stringWithFormat: @"%.2f", zValue[1]]];

for (T = 0; T < L; T ++)

{

O[T] = ((-zValue[1] + 1) /2 * O1[T] + O2[T] + (-zValue[1] + 1) /2 * O3[T]) / 3;

}

for (i = 0; i < 2; i ++)

{

if (playCurrent == 1)

{

alSourceStop(alSource[i]);

}

}

for (i = 0; i < 2; i ++)

{

alSourcei(alSource[i], AL_BUFFER, 0);

}

for (i = 0; i < 2; i ++)

{

alBufferData(alBuffer[i], AL_FORMAT_MONO16, O, L, SR);

}

for (i = 0; i < 2; i ++)

{

alSourcei(alSource[i], AL_BUFFER, alBuffer[i]);

if(statusP == 1 && playCurrent == 1)

{

alSourcePlay(alSource[i]);

}

}

depthStat = 1;

}

}

// Play sound when the mouse is over the third shape (bottom right)

else if (mouseTrack.x < ((gPos[2][0]+1.1 - 0.06 * zValue[2])*kScreenWidth /2) && mouseTrack.x > ((gPos[2][0]+0.9 + 0.06 * zValue[2])*kScreenWidth /2)

 && mouseTrack.y < ((-gPos[2][1]+1.1 - 0.06 * zValue[2])*kScreenHeight /2) && mouseTrack.y > ((-gPos[2][1]+0.9 + 0.06 * zValue[2])*kScreenHeight /2))

{

if (statusP == 1 && playCurrent == 0)

{

alSourcePlay(alSource[0]);

alSourcePlay(alSource[1]);

playCurrent = 1;

}

if (statusZ == 1 && depthStat != 2)

{

[zDepth setStringValue: [NSString stringWithFormat: @"%.2f", zValue[2]]];

for (T = 0; T < L; T ++)

{

O[T] = ((-zValue[2] + 1) /2 * O1[T] + O2[T] + (-zValue[2] + 1) /2 * O3[T]) / 3;

}

for (i = 0; i < 2; i ++)

{

if (playCurrent == 1)

{

alSourceStop(alSource[i]);

}

}

for (i = 0; i < 2; i ++)

{

alSourcei(alSource[i], AL_BUFFER, 0);

}

for (i = 0; i < 2; i ++)

{

alBufferData(alBuffer[i], AL_FORMAT_MONO16, O, L, SR);

}

for (i = 0; i < 2; i ++)

{

alSourcei(alSource[i], AL_BUFFER, alBuffer[i]);

if(statusP == 1 && playCurrent == 1)

{

alSourcePlay(alSource[i]);

}

}

depthStat = 2;

}

}

// Play sound when the mouse is over the fourth shape (top right)

else if (mouseTrack.x < ((gPos[3][0]+1.1 - 0.06 * zValue[3])*kScreenWidth /2) && mouseTrack.x > ((gPos[3][0]+0.9 + 0.06 * zValue[3])*kScreenWidth /2)

 && mouseTrack.y < ((-gPos[3][1]+1.1 - 0.06 * zValue[3])*kScreenHeight /2) && mouseTrack.y > ((-gPos[3][1]+0.9 + 0.06 * zValue[3])*kScreenHeight /2))

{

if (statusP == 1 && playCurrent == 0)

{

alSourcePlay(alSource[0]);

alSourcePlay(alSource[1]);

playCurrent = 1;

}

if (statusZ == 1 && depthStat != 3)

{

[zDepth setStringValue: [NSString stringWithFormat: @"%.2f", zValue[3]]];

for (T = 0; T < L; T ++)

{

O[T] = ((-zValue[3] + 1) /2 * O1[T] + O2[T] + (-zValue[3] + 1) /2 * O3[T]) / 3;

}

for (i = 0; i < 2; i ++)

{

if (playCurrent == 1)

{

alSourceStop(alSource[i]);

}

}

for (i = 0; i < 2; i ++)

{

alSourcei(alSource[i], AL_BUFFER, 0);

}

for (i = 0; i < 2; i ++)

{

alBufferData(alBuffer[i], AL_FORMAT_MONO16, O, L, SR);

}

for (i = 0; i < 2; i ++)

{

alSourcei(alSource[i], AL_BUFFER, alBuffer[i]);

if(statusP == 1 && playCurrent == 1)

{

alSourcePlay(alSource[i]);

}

}

depthStat = 3;

}

}

// Otherwise if isolated sounds is not on then do not play the sounds outside of the shapes

else if(statusI == 1)

{

alSourceStop(alSource[0]);

alSourceStop(alSource[1]);

playCurrent = 0;

}

else if (statusI == 0 && statusP == 1 && playCurrent == 0)

{

alSourcePlay(alSource[0]);

alSourcePlay(alSource[1]);

playCurrent = 1;

}

float pitchValue;

pitchValue = (transformY+1)*0.5 + 0.5;

// If Y is enabled then apply pitch changes to the audio

if(statusY == 1)

{

alSourcef(alSource[0], AL_PITCH, pitchValue);

alSourcef(alSource[1], AL_PITCH, pitchValue);

[Pitch setStringValue: [NSString stringWithFormat: @"%.2f", pitchValue]];

}

// Otherwise pitch is kept at default values

else

{

alSourcef(alSource[0], AL_PITCH, 1.0f);

alSourcef(alSource[1], AL_PITCH, 1.0f);

}

}

// Method for moving the shapes around.

- (void) movePoint

{

// if the mouse down/drag occurs within the first shape then change the position accordingly for redraw

if (mousePoint.x < ((gPos[0][0]+1.1)*kScreenWidth /2) && mousePoint.x > ((gPos[0][0]+0.9)*kScreenWidth /2)

 && mousePoint.y < ((-gPos[0][1]+1.1)*kScreenHeight /2) && mousePoint.y > ((-gPos[0][1]+0.9)*kScreenHeight /2))

{

gPos[0][0] = 2.0 * (mousePoint.x / kScreenWidth) - 1.01;

gPos[0][1] = -(2.0 * (mousePoint.y / kScreenHeight) - 1.01);

}

// if the mouse down/drag occurs within the second shape then change the position accordingly for redraw

if (mousePoint.x < ((gPos[1][0]+1.1)*kScreenWidth /2) && mousePoint.x > ((gPos[1][0]+0.9)*kScreenWidth /2)

 && mousePoint.y < ((-gPos[1][1]+1.1)*kScreenHeight /2) && mousePoint.y > ((-gPos[1][1]+0.9)*kScreenHeight /2))

{

gPos[1][0] = 2.0 * (mousePoint.x / kScreenWidth) - 1.01;

gPos[1][1] = -(2.0 * (mousePoint.y / kScreenHeight) - 0.99);

}

// if the mouse down/drag occurs within the third shape then change the position accordingly for redraw

if (mousePoint.x < ((gPos[2][0]+1.1)*kScreenWidth /2) && mousePoint.x > ((gPos[2][0]+0.9)*kScreenWidth /2)

 && mousePoint.y < ((-gPos[2][1]+1.1)*kScreenHeight /2) && mousePoint.y > ((-gPos[2][1]+0.9)*kScreenHeight /2))

{

gPos[2][0] = 2.0 * (mousePoint.x / kScreenWidth) - 0.99;

gPos[2][1] = -(2.0 * (mousePoint.y / kScreenHeight) - 0.99);

}

// if the mouse down/drag occurs within the fourth shape then change the position accordingly for redraw

if (mousePoint.x < ((gPos[3][0]+1.1)*kScreenWidth /2) && mousePoint.x > ((gPos[3][0]+0.9)*kScreenWidth /2)

 && mousePoint.y < ((-gPos[3][1]+1.1)*kScreenHeight /2) && mousePoint.y > ((-gPos[3][1]+0.9)*kScreenHeight /2))

{

gPos[3][0] = 2.0 * (mousePoint.x / kScreenWidth) - 0.99;

gPos[3][1] = -(2.0 * (mousePoint.y / kScreenHeight) - 1.01);

}

}

// initialise the OpenAL by running all the initialise methods.

- (void) initOpenAL

{

InitialiseOpenAL();

atexit(TeardownOpenAL);

alGetError();

InitialiseBuffers();

InitialiseSources();

InitialiseListener();

}

// sets the first responder status

- (BOOL)acceptsFirstResponder

{

return YES;

}

- (BOOL)becomeFirstResponder

{

return YES;

}

- (BOOL)resignFirstResponder

{

return YES;

}

// method for setting the slider to control the size of the top left shape and the muffling of the associated audio

- (void) set: (int) inTag :(float) inDistance;

{

// receive the value from slider

switch (inTag)

{

case 0:

[distanceA setStringValue: [NSString stringWithFormat: @"%.2f", inDistance]];

break;

case 1:

[distanceB setStringValue: [NSString stringWithFormat: @"%.2f", inDistance]];

break;

case 2:

[distanceC setStringValue: [NSString stringWithFormat: @"%.2f", inDistance]];

break;

case 3:

[distanceD setStringValue: [NSString stringWithFormat: @"%.2f", inDistance]];

break;

}

zValue[inTag] = inDistance;

// if the Z is enabled, change the proportion of each harmonic to produce lower tone

if(statusZ == 1)

{

for (T = 0; T < L; T ++)

{

O[T] = ((-zValue[inTag] + 1) /2 * O1[T] + O2[T] + (-zValue[inTag] + 1) /2 * O3[T]) / 3;

}

for (i = 0; i < 2; i ++)

{

if (playCurrent == 1)

{

alSourceStop(alSource[i]);

}

}

for (i = 0; i < 2; i ++)

{

alSourcei(alSource[i], AL_BUFFER, 0);

}

for (i = 0; i < 2; i ++)

{

alBufferData(alBuffer[i], AL_FORMAT_MONO16, O, L, SR);

}

for (i = 0; i < 2; i ++)

{

alSourcei(alSource[i], AL_BUFFER, alBuffer[i]);

if(statusP == 1 && playCurrent == 1)

{

alSourcePlay(alSource[i]);

}

}

}

}

// Get status of the checkboxes for X, Y, Z, I, and P

- (void) xStatus: (float) inStat;

{

statusX = inStat;

}

- (void) yStatus: (float) inStat;

{

statusY = inStat;

}

- (void) zStatus: (float) inStat;

{

statusZ = inStat;

}

- (void) setIso: (float) inStat;

{

statusI = inStat;

}

- (void) power: (float) inStat;

{

statusP = inStat;

}

- (void) awakeFromNib

{

// Make the window to be the first responder to allow mouse tracking

[[self window] makeFirstResponder:self];

// Make the window accept the mouse moved events to return mouse location

[[self window] setAcceptsMouseMovedEvents:YES];

}

@end
9.2 Project Plan

[image: image11.jpg]
Left Channel

Right Channel

Amplitude

Object Position

Left

Right

Centre

AUTHOR:

FAMILY NAME: BEH

GIVEN NAME: Khee Shyang

DATE: 20-10-2006

SUPERVISOR: Mr Iain Murray

OPTION: Computer Systems

GOOD

AVERAGE

POOR

EXAMINER

DEGREE: Bachelor of Engineering

ABSTRACT

OpenAL is a relatively new entity and was used as the basis for a test bed to determine the feasibility of 3D audio as a form of non visual representation. A visually impaired person is unable to navigate a graphical application to a certain degree. Audio and tactile feedback responses aim to assist navigation through non visual representations of the graphical interface. The test bed utilised OpenAL as an audio scheme to provide the audio feedback to identify objects in a graphical application. The position and nature of the objects was the main focus of identification. The identification of objects relied mainly on the audio cues received by the visually impaired user. The audio scheme was designed through the use of OpenAL for application within a haptic environment.

INDEXING TERMS

OpenAL, OpenGL, 3D audio, haptics, non visual representation, assistive technology

CO-EXAMINER

TECHNICAL WORK

REPORT PRESENTATION

TITLE: Integration of OpenAL Audio for a Haptics Environment

PAGE
51

_1095332289.doc
[image: image1.png]

