
James Irvine, University of Strathclyde, 2001 97

5 Development Board Manual
The MSA0654 Development Board contains a M30624FGLFP M16C 62 series
microcontroller, along with a serial interface for connection to a PC and some
switches and display devices. The unit allows M16C programs to be developed.

The unit also contains a monitor program. This monitor program is used with the C-
SPY debugger program to allow advanced debugging of programs, by means such as
breakpoints and single stepping. The fact that there is a monitor program on the
microcontroller in addition to the user program has to be taken into account when
writing user programs, since some of the chips resources must be reserved for the user
program. These limitations are described here.

In addition to these limitations, the monitor program also adjusts some register values,
as detailed in this document.

Note that it is possible to use the development board to construct a stand-alone system
by replacing the monitor program with a user program programmed in to the flash
memory on the microcontroller. Full details of reprogramming the monitor can be
found in the M16C/62 StarterKit2 manual.

5.1 M30624FGLFP Microcontroller
The M16C/62 group accommodates certain units in a single chip. These units include
ROM and RAM to store instructions and data and the central processing unit (CPU) to
execute arithmetic/logic operations. Also included are peripheral units such as timers,
serial I/O, D-A converter, DMAC, CRC calculation circuit, A-D converter, and I/O
ports. The following explains each unit.

James Irvine, University of Strathclyde, 2001 98

5.1.1 Memory
The M16C/62 group address space extends the 1M bytes from address 0000016 to
FFFFF16. From FFFFF16 down is ROM. In the M30624FGLFP there is 256K bytes of
internal ROM from C0000h to FFFFFh. The vector table for fixed interrupts such as
the reset and NMI are mapped to FFFDC16 to FFFFF16. The starting address of the
interrupt routine is stored here. The address of the vector table for timer interrupts,
etc., can be set as desired using the internal register (INTB).

From 0040016 up is RAM. For example, in the M30624FGLFP, 20K bytes of internal
RAM is mapped to the space from 0040016 to 053FF16. In addition to storing data, the
RAM also stores the stack used when calling subroutines and when interrupts are
generated.

The SFR area is mapped to 0000016 to 003FF16. This area accommodates the control
registers for peripheral devices such as I/O ports, A-D converter, serial I/O, and
timers, etc. Any part of the SFR area that is not occupied is reserved and cannot be
used for other purposes.

The special page vector table is mapped to FFE0016 to FFFDB16. If the starting
addresses of subroutines or the destination addresses of jumps are stored here,
subroutine call instructions and jump instructions can be used as 2-byte instructions,
reducing the number of program steps.

5.1.2 Central Processing Unit (CPU)
The CPU has a total of 13 registers shown below. Seven of these registers (R0, R1,
R2, R3, A0, A1, and FB) come in two sets; therefore, these have two register banks.

James Irvine, University of Strathclyde, 2001 99

(1) Data registers (R0, R0H, R0L, R1, R1H, R1L, R2, and R3)
Data registers (R0, R1, R2, and R3) are configured with 16 bits, and are used
primarily for transfer and arithmetic/logic operations.
Registers R0 and R1 each can be used as separate 8-bit data registers, high-order bits
as (R0H/R1H), and low-order bits as (R0L/R1L). In some instructions, registers R2
and R0, as well as R3 and R1 can use as 32-bit data registers (R2R0/R3R1).

(2) Address registers (A0 and A1)
Address registers (A0 and A1) are configured with 16 bits, and have functions
equivalent to those of data registers. These registers can also be used for address
register indirect addressing and address register relative addressing.
In some instructions, registers A1 and A0 can be combined for use as a 32-bit address
register (A1A0).

(3) Frame base register (FB)
Frame base register (FB) is configured with 16 bits, and is used for FB relative
addressing.

(4) Program counter (PC)
Program counter (PC) is configured with 20 bits, indicating the address of an
instruction to be executed.

James Irvine, University of Strathclyde, 2001 100

(5) Interrupt table register (INTB)
Interrupt table register (INTB) is configured with 20 bits, indicating the start address
of an interrupt vector table.

(6) Stack pointer (USP/ISP)
Stack pointer comes in two types: user stack pointer (USP) and interrupt stack pointer
(ISP), each configured with 16 bits. Your desired type of stack pointer (USP or ISP)
can be selected by a stack pointer select flag (U flag). This flag is located at the
position of bit 7 in the flag register (FLG).

(7) Static base register (SB)
Static base register (SB) is configured with 16 bits, and is used for SB relative
addressing.

(8) Flag register (FLG)
Flag register (FLG) is configured with 11 bits, each bit is used as a flag. The
following explains the function of each flag:
• Bit 0: Carry flag (C flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the
arithmetic/logic unit.

• Bit 1: Debug flag (D flag)
This flag enables a single-step interrupt.
When this flag is “1”, a single-step interrupt is generated after instruction
execution. This flag is cleared to “0” when the interrupt is acknowledged.

• Bit 2: Zero flag (Z flag)
This flag is set to “1” when an arithmetic operation resulted in 0; otherwise,
cleared to “0”.

• Bit 3: Sign flag (S flag)
This flag is set to “1” when an arithmetic operation resulted in a negative value;
otherwise, cleared to “0”.

• Bit 4: Register bank select flag (B flag)
This flag chooses a register bank. Register bank 0 is selected when this flag is “0”;
register bank 1 is selected when this flag is “1”.

• Bit 5: Overflow flag (O flag)
This flag is set to “1” when an arithmetic operation resulted in overflow;
otherwise, cleared to “0”.

• Bit 6: Interrupt enable flag (I flag)
This flag enables a maskable interrupt.
An interrupt is disabled when this flag is “0”, and is enabled when this flag is “1”.
This flag is cleared to “0” when the interrupt is acknowledged.

• Bit 7: Stack pointer select flag (U flag)
Interrupt stack pointer (ISP) is selected when this flag is “0” ; user stack pointer
(USP) is selected when this flag is “1”.
This flag is cleared to “0” when a hardware interrupt is acknowledged or an INT
instruction of software interrupt Nos. 0 to 31 is executed.

• Bits 8 to 11: Reserved area
• Bits 12 to 14: Processor interrupt priority level (IPL)

James Irvine, University of Strathclyde, 2001 101

Processor interrupt priority level (IPL) is configured with three bits, for
specification of up to eight processor interrupt priority levels from level 0 to level
7.
If a requested interrupt has priority greater than the processor interrupt priority
level (IPL), the interrupt is enabled.

• Bit 15: Reserved area

The C, Z, S, and O flags are changed when instructions are executed. See the software
manual for details.

5.1.3 Other Registers
The following is a list of standard names for the microcontroller’s registers. In order
to use these names in C or Assembler Routines, you need to include a definition file
such as M3062F.h
Processor Mode reg PM Processor Mode reg 0 PM0

Processor Mode reg 1 PM1
System clock control reg CM System clock control reg 0 CM0

System clock control reg 1 CM1
Protect reg PRCR
Watchdog timer start reg WDTS Watchdog timer control reg WDC
Chip select control reg CSR Address match interrupt enable AIER
Address match interrupt reg 0 (low) RMAD0L Address match interrupt reg 1 (low) RMAD1L
Address match interrupt reg 0 (mid) RMAD0M Address match interrupt reg 1 (mid) RMAD1M
Address match interrupt reg 0 (high) RMAD0H Address match interrupt reg 1 (high) RMAD1H
DMA0 source pointer (word) SAR0 DMA1 source pointer (long) SAR1
DMA0 source pointer (low) SAR0L DMA1 source pointer (low) SAR1L
DMA0 source pointer (mid) SAR0M DMA1 source pointer (mid) SAR1M
DMA0 source pointer (high) SAR0H DMA1 source pointer (high) SAR1H
DMA0 destination pointer (long) DAR0 DMA1 destination pointer (long) DAR1
DMA0 destination pointer (low) DAR0L DMA1 destination pointer (low) DAR1L
DMA0 destination pointer (mid) DAR0M DMA1 destination pointer (mid) DAR1M
DMA0 destination pointer (high) DAR0H DMA1 destination pointer (high) DAR1H
DMA0 transfer counter TCR0 DMA1 transfer counter TCR1
DMA0 transfer counter (low) TCR0L DMA1 transfer counter (low) TCR1L
DMA0 transfer counter (high) TCR0H DMA1 transfer counter (high) TCR1H
DMA0 control reg DM0CON DMA1 control reg . DM1CON
DMA0 interrupt control reg . DM0IC DMA1 interrupt control reg DM1IC
Key input interrupt control reg KUPIC
AD conversion interrupt control reg ADIC

James Irvine, University of Strathclyde, 2001 102

UART0 transmit interrupt control reg S0TIC UART1 transmit interrupt control reg S1TIC
UART0 receive interrupt control reg S0RIC UART1 receive interrupt control reg S1RIC
TimerA0 interrupt control reg TA0IC TimerB0 interrupt control reg TB0IC
TimerA1 interrupt control reg TA1IC TimerB1 interrupt control reg TB1IC
TimerA2 interrupt control reg TA2IC TimerB2 interrupt control reg TB2IC
TimerA3 interrupt control reg TA3IC TimerB3 interrupt control reg TB3IC
TimerA4 interrupt control reg TA4IC TimerB4 interrupt control reg TB4IC

TimerB5 interrupt control reg TB5IC
Interrupt0 interrupt control reg INT0IC INT3 interrupt control reg INT3IC
Interrupt1 interrupt control reg INT1IC INT4 interrupt control reg INT4IC
Interrupt2 interrupt control reg INT2IC INT5 interrupt control reg INT5IC
TimerA/B count start flags TABSR
Clock prescaler reset flag CPSRF
One-shot start flag ONSF
Trigger select reg TRGSR
Up- down-count selection flag UDF
TimerA0 TA0 TimerA1 TA1
TimerA0 (low byte) TA0L TimerA1 (low byte) TA1L
TimerA0 (high byte) TA0H TimerA1 (high byte) TA1H
TimerA2 TA2 TimerA3 TA3
TimerA2 (low byte) TA2L TimerA3 (low byte) TA3L
TimerA2 (high byte) TA2H TimerA3 (high byte) TA3H
TimerA4 TA4 TimerB0 TB0
TimerA4 (low byte) TA4L TimerB0 (low byte) TB0L
TimerA4 (high byte) TA4H TimerB0 (high byte) TB0H
TimerB1 TB1 TimerB2 TB2
TimerB1 (low byte) TB1L TimerB2 (low byte) TB2L
TimerB1 (high byte) TB1H TimerB2 (high byte) TB2H
TimerB3 TB3 TimerB4 TB4
TimerB3 (low byte) TB3L TimerB4 (low byte) TB4L
TimerB3 (high byte) TB3H TimerB4 (high byte) TB4H
TimerB5 TB5
TimerB5 (low byte) TB5L
TimerB5 (high byte) TB5H
TimerA0 mode reg TA0MR TimerB0 mode reg TB0MR
TimerA1 mode reg TA1MR TimerB1 mode reg TB1MR
TimerA2 mode reg TA2MR TimerB2 mode reg TB2MR
TimerA3 mode reg TA3MR TimerB3 mode reg TB3MR
TimerA4 mode reg TA4MR TimerB4 mode reg TB4MR

TimerB5 mode reg TB5MR
UART0 mode reg U0MR UART1 mode reg U1MR
UART0 baud rate generator U0BRG UART1 baud rate generator U1BRG
UART0 transmit buffer U0TB UART1 transmit buffer U1TB
UART0 transmit buffer (low byte) U0TBL UART1 transmit buffer (low byte) U1TBL
UART0 transmit buffer (high byte) U0TBH UART1 transmit buffer (high byte) U1TBH
UART0 control reg U0C UART1 control reg U1C
UART0 control reg 0 U0C0 UART1 control reg 0 U1C0
UART0 control reg 1 U0C1 UART1 control reg 1 U1C1
UART0 receive buffer U0RB UART1 receive buffer U1RB
UART0 receive buffer (low byte) U0RBL UART1 receive buffer (low byte) U1RBL
UART0 receive buffer (high byte) U0RBH UART1 receive buffer (high byte) U1RBH
UART control reg 2 UCON
UART2 transmit buffer reg U2TB UART2 transmit interrupt control reg S2TIC
UART2 transmit buffer reg (low byte) U2TBL UART2 receive interrupt control reg S2RIC
UART2 transmit buffer reg (high byte) U2TBH UART2 special mode reg 2 U2SMR2
UART2 receive buffer reg U2RB UART2 special mode reg U2SMR
UART2 receive buffer reg (low byte) U2RBL UART2 transmit/receive mode reg U2MR
UART2 receive buffer reg (high byte) U2RBH UART2 bit rate generator U2BRG
UART2 transmit/receive control reg 0 U2C0 UART2 transmit/receive control reg 1 U2C1
DMA0 cause selection DM0SL DMA1 cause selection DM1SL
CRC data reg CRCD CRC data reg (low byte) CRCDL
CRC data reg (high byte) CRCDH CRC input reg CRCIN
A/D reg 0 AD0 A/D reg 1 AD1

James Irvine, University of Strathclyde, 2001 103

A/D reg 0 (low byte) AD0L A/D reg 1 (low byte) AD1L
A/D reg 0 (high byte) AD0H A/D reg 1 (high byte) AD1H
A/D reg 2 AD2 A/D reg 3 AD3
A/D reg 2 (low byte) AD2L A/D reg 3 (low byte) AD3L
A/D reg 2 (high byte) AD2H A/D reg 3 (high byte) AD3H
A/D reg 4 AD4 A/D reg 5 AD5
A/D reg 4 (low byte) AD4L A/D reg 5 (low byte) AD5L
A/D reg 4 (high byte) AD4H A/D reg 5 (high byte) AD5H
A/D reg 6 AD6 A/D reg 7 AD7
A/D reg 6 (low byte) AD6L A/D reg 7 (low byte) AD7L
A/D reg 6 (high byte) AD6H A/D reg 7 (high byte) AD7H
A/D control reg ADCON A/D control reg 0 ADCON0
A/D control reg 1 ADCON1 A/D control reg 2 ADCON2
D-A control reg DACON
D-A reg 0 DA0 D-A reg 1 DA1
Port0 and Port1 reg P01 Port2 and Port3 reg P23
Port0 reg P0 Port2 reg P2
Port1 reg P1 Port3 reg P3
Port0 direction reg P0D Port2 direction reg P2D
Port1 direction reg P1D Port3 direction reg P3D
Port0 and Port1 direction reg P01D Port2 and Port3 direction reg P23D
Port4 and Port5 reg P45 Port6 and Port7 reg P67
Port4 reg P4 Port6 reg P6
Port5 reg P5 Port7 reg P7
Port4 direction reg P4D Port6 direction reg P6D
Port5 direction reg P5D Port7 direction reg P7D
Port4 and Port5 direction reg P45D Port6 and Port7 direction reg P67D
Port8 and Port9 reg P89
Port8 reg P8
Port9 reg P9 Port10 reg P10
Port8 direction reg P8D Port10 direction reg P10D
Port9 direction reg P9D
Port8 and Port9 direction reg P89D
Pull-up reg 0 and 1 PUR01 Pull-up reg 1 PUR1
Pull-up reg 0 PUR0 Pull-up reg 2 PUR2
Data Bank reg DBR
SI/O3 interrupt control reg S3IC SI/O4 interrupt control reg S4IC
Bus collision detection interrupt reg BCNIC
TimerB3,4, 5 count start flag TBSR
TimerA1-1 reg TA11 TimerA2-1 reg TA21
TimerA1-1 reg (low byte) TA11L TimerA2-1 reg (low byte) TA21L
TimerA1-1 reg (high byte) TA11H TimerA2-1 reg (high byte) TA21H
TimerA4-1 reg TA41
TimerA4-1 reg (low byte) TA41L
TimerA4-1 reg (high byte) TA41H
Three-phase PWM control reg 0 INVC0 Three-phase PWM control reg 1 INVC1
Three-phase output buffer reg 0 IDB0 Three-phase output buffer reg 1 IDB1
Dead time timer DTT
Timer B2 interrupt occurrence frequency ICTB2
Interrupt cause select reg IFSR
SI/O3 transmit/receive reg S3TRR SI/O4 transmit/reveive reg S4TRR
SI/O3 control reg S3C SI/O4 control reg S4C
SI/O3 bit rate generator S3BRG SI/O4 bit rate generator S4BRG
Port control reg PCR
FLASH memory control 0 & 1 FMCR FLASH memory control 1 FMCR1
FLASH memory control 0 FMCR0 FLASH ROM code protect function ROMCP

James Irvine, University of Strathclyde, 2001 104

5.2 Standard Interrupt Vectors

0 INTB (l) to INTB+3 (h) BRK (not maskable)

4 INTB+16 (l) to INTB+19 (h) INT3
5 INTB+20 (l) to INTB+23 (h) Timer B5
6 INTB+24 (l) to INTB+27 (h) Timer B4
7 INTB+28 (l) to INTB+31 (h) Timer B3
8 INTB+32 (l) to INTB+35 (h) Selectable to SI/O4 or INT5
9 INTB+36 (l) to INTB+39 (h) Selectable to SI/O3 or INT4
10 INTB+40 (l) to INTB+43 (h) Bus collision detection
11 INTB+44 (l) to INTB+47 (h) DMA0
12 INTB+48 (l) to INTB+51 (h) DMA1
13 INTB+52 (l) to INTB+55 (h) Key input interrupt
14 INTB+56 (l) to INTB+59 (h) A to D
15 INTB+60 (l) to INTB+63 (h) UART2 transmit or I2C NACK
16 INTB+64 (l) to INTB+67 (h) UART2 receive or I2C ACK
17 INTB+68 (l) to INTB+71 (h) UART0 transmit
18 INTB+72 (l) to INTB+75 (h) UART0 receive
19 INTB+76 (l) to INTB+79 (h) UART1 transmit
20 INTB+80 (l) to INTB+83 (h) UART1 receive
21 INTB+84 (l) to INTB+87 (h) Timer A0
22 INTB+88 (l) to INTB+91 (h) Timer A1
23 INTB+92 (l) to INTB+95 (h) Timer A2
24 INTB+96 (l) to INTB+99 (h) Timer A3
25 INTB+100 (l) to INTB+103 (h) Timer A4
26 INTB+104 (l) to INTB+107 (h) Timer B0
27 INTB+108 (l) to INTB+111 (h) Timer B1
28 INTB+112 (l) to INTB+115 (h) Timer B2
29 INTB+116 (l) to INTB+119 (h) INT0
30 INTB+120 (l) to INTB+123 (h) INT1
31 INTB+124 (l) to INTB+127 (h) INT2
32
to
63

INTB+128 on Software interrupts (not
maskable)

The above interrupts operate via the variable vector table. There are additional
interrupts (Undefined, overflow, Address match, single-step, watchdog timer, DBC,
and NMI) which operate via the fixed interrupt table. However, these are used by the
monitor and should not be used by user programs.

5.3 On Board Peripherals
The MSA0654 Development Board contains four switches, two seven segment LED
displays and a variable resister.

James Irvine, University of Strathclyde, 2001 105

5.3.1 Analogue Input
The potentiometer, marked AD near the centre of the board, is connected to the AN0
pin on the M16C. The potentiometer is connected to ground and 5V, allowing any
voltage between these two points to be applied to the AN0 pin.

5.3.2 Seven Segment Displays
The board has two seven segment displays. To reduce the number of I/O pins which
are required these displays are multiplexed, so that the segments to display are put out
on port P0, and then the digit is selected using the lowest two bits of port P1. The
segment drives are active low, so writing a 0 to them switches on the relevant
segment. The allocations are given below.

R1

P1.0 (for digit 1)
or

P1.1 (for digit 2)

P0.0
Segment a

P0.1
Segment b

P0.6
Segment g

P0.5
Segment f

P0.2
Segment c

P0.4
Segment e

P0.3
Segment d

P0.7
Segment h

b

a

c

d

e

f

g

h

James Irvine, University of Strathclyde, 2001 106

5.3.3 Switches
There are four switches on the board, each of which when activated connect the
relevant input terminal to ground. When a switch is not pressed, a pull up resistor
brings the line high.

Switch Input Line Alternative Function
SW1 P8.2 INT0
SW2 P8.3 INT1
SW3 P9.7 ADTRG
SW4 RESET

5.3.4 Restrictions on On-chip Peripherals
UART1 is used by the monitor to communicate with the host PC. This means that its
transmit and receive interrupts are used for communication between the monitor
program and the host computer and the UART cannot be used in user programs.

5.4 Memory Map
The monitor uses 256 bytes of RAM, leaving 19.4Kbyte of internal RAM for use
between 00400h and 053FFh. 16Kbytes of FlashROM are also used by the monitor,
leaving 239.4Kbyte of FlashROM between C0000h and FBE00h (see below). Note,
however, that the IAR compiler available in the lab is restricted to 16Kbyte of code,
although other versions of the compiler are available which allow full use of the
memory. It is planned to upgrade to a version which will remove this restriction in
the near future, but the 16K limit will not be a problem for the projects developed in
the course as long as you do not try to use the full version of the library functions.

The monitor uses internal memory mode and therefore writes a '1' to bit 3 of the
Processor Mode Register 1. Even without the monitor, memory expansion mode
cannot be used unless resistor R12 is removed from the board.

James Irvine, University of Strathclyde, 2001 107

5.5 Register Usage
The monitor uses a number of registers. In some cases these registers may not be
altered by program or the monitor may fail to operate. In other cases, it is necessary
to maintain the values of certain bits to ensure correct operation.

Register Name Available for Use Value after a reset
Processor mode register 0 No. Do not modify this register Initialised to 00h.

Processor mode:
Single-chip mode

Processor mode register 1 When changing this register in the user program,
always be sure to set bit 3 to 1.

Initialised to 08h.

System clock control
register 0

Initialised to 08h.

System clock control
register 1

Initialised to 20h.
Selected main clock
divide ratio: Not
divide

ISP (interrupt stack
pointer)

Set a value below 0530016h.
Values 0530016h through 053FF16h are used by
the monitor program.

Initialised to
044FFh.

UART1 Transmit/Receive
Mode Register

No. Do not modify this register Initialised to 05h.

UART1 Transfer Speed
Register

No. Do not modify this register Initialised to 1Ah.

UART1 Transmit/Receive
Control Register 0

No. Do not modify this register Initialised to 10h.

Register Name Available for Use Value after a reset
UART1 Transmit/Receive
Control Register 1

No. Do not modify this register Initialised to 05h.

UART1 Interrupt Control
Register 0

No. Do not modify this register Initialised to 07h

UART transmit/receive
control register 2

Don't change bits 0, 2, 4, 5, and 6 Initialised to 03h

UART1 bit rate generator No. Do not modify this register
UART1 transmit buffer
register

Don't write any data to this register.

UART1 receive buffer
register

Don't read this register.

Protect register If the monitor program starts immediately after
Protect Register bit 2 (Port P9 Direction Register
and SI/O3,4 Control Register write enable bit) is
set to 1 (enabled), a write to some address by the
monitor program occurs, so that the P9 Direction
Register write enable bit is reset to 0 (disabled).
Consequently, the P9 Direction Register cannot
be written to in the following cases:
1) When a break to at the instruction that sets

the write enable bit to 1 occurs
2) When Go, Step, Over, or Return to the

instruction that sets the write enable bit to 1
is executed

3) When the P9 Direction Register is operated
on from the dump window, etc.

Flag register Write to the D flag and I flag is ignored.
(Always D flag is 0, I flag is 1)

James Irvine, University of Strathclyde, 2001 108

5.6 Interrupts
The monitor program uses interrupts for its operation. In order not to interfere with
the monitor, user programs should not disable interrupts, and should not set the
Interrupt Priority Level (IPL) to 7 (but see below). In particular, most of the interrupts
to which the fixed vector table relates (Undefined, overflow, BRK instruction,
Address match, single-step, watchdog timer, DBC, and NMI) are inhibited by the
monitor, and will look like a REIT function to a user program, even if a different
routine is specified in the program. Therefore, these functions are not available to the
user program, and the UND and INTO instructions should not be used in the program
(which means that und_instruction() and interrupt_on_overflow() should not be used
in the C code, either, since these intrinsic functions generate those instructions). The
exception is the Reset vector at FFFFCh to FFFFFh, which will work normally.

All interrupts located in the variable vector table are available to the user with the
exception of the UART1 transmit/receive interrupts, which are used by the monitor
program. When using INTB to set up the variable vector table, set 0FCB6BH at the
addresses (software interrupt numbers 19, 20) that correspond to the UART1
transmit/receive interrupts to point to the correct place within the monitor code. The
simplest way to do this is to include the file msa0654.s34 in the project.

The monitor system turns off interrupts 1 to 6, so in order to interrupt the monitor
routines, it is necessary to use priority level 7 interrupts for your code. Note that this
will make the ISR impossible to debug by single stepping, so debug it using a lower
interrupt priority, and then change to level 7 when you have it working.
The monitor’s STEP function requires interrupts, and so cannot be used when
interrupts are disabled. It is necessary to disable interrupts when changing when
changing the Interrupt Control Register, so this part of the code can not be single
stepped. Interrupts will also be disabled if your program contains an interrupt service
routine. If this is the case, ensure that interrupts are not disabled for more than more
than 260µs, you should set the I flag to 1 to re-enable interrupts at the beginning of
the interrupt routine.

5.7 Stop and Wait Modes
Stop and Wait modes cannot be used on the development system.

5.8 Breakpoints and Single Stepping
Breakpoints can be set on most instructions, especially in C code, but care is required
in some cases. It is not possible to set a breakpoint on the instruction following an
LDC instruction. Also, if you set a break on an INT instruction, GO will not work
correctly. This is due to the fact that breakpoints are implemented by replacing the
instruction with a software interrupt returning control to the monitor, and replacing an
INT with another INT causes problems restarting.

For similar reasons, it is not possible to single step into an interrupt routine. For
example, when single stepping from instruction A in the following example, it would
normally be expected that the debugger would stop on instruction B. In fact, it runs
through the interrupt routine and stops at instruction C.

James Irvine, University of Strathclyde, 2001 109

NOP
NOP

A INT #3 STEP Skipped over when STEP is executed.
C NOP

JMP MAIN
INT_3:

B NOP Address at which program execution ought to stop
NOP
NOP
REIT

In order to step into an interrupt routine, you need to set a Break in the code at the
start of the routine, and Go to it (rather than Stepping). The following will stop the
code at B, allowing you to continue by single stepping.

NOP
NOP GO, rather than STEP, from this statement
INT #3
NOP
JMP MAIN
INT_3:

B NOP Place Break here
NOP
NOP
REIT

When single stepping past an REIT, JMPS or JSRS instruction, the following
instruction will also be executed (i.e., the debugger will execute two instructions)

If interrupts are disabled within the code, then single stepping will execute right
through the code without stopping until interrupts are enabled again. For example,
when single stepping from A, execution will stop on instruction C, not instruction B.

A FCLR I ; Disable interrupt
B AND #00H , 0055H ; Change Timer Interrupt 1

NOP ; Clear instructions in pipeline
NOP

C FSET I ; Enable Interrupt

5.9 Communication Problems during Debug
For communications to operate with the development system, the monitor must be
running. Sometimes this is not the case and a communication error occurs. To
recover, press the reset button on the board and the reset button on the C-SPY menu.
However, the program you downloaded may be corrupted and so it might be
necessary to download the program again. The simplest way to do this is to close C-
SPY and choose Debugger from the Project menu in the IAR Embedded
Workbench.

The fact that the monitor is not operating may be due to the fact that the user program
is running away and not returning control to the monitor. Since the monitor uses

James Irvine, University of Strathclyde, 2001 110

interrupts to allow this to happen, interrupts have to be enabled and you cannot
disable them for your program (other than for short periods). Be careful if you have
an interrupt routine which lasts more than 260µs, you should set the I flag to 1 to re-
enable interrupts at the beginning of the interrupt routine. If an error occurs during
downloading, press the reset button in case the program has started to run.

