
Chip No

Jun-99     Mitsubishi Electronics APN#1 of 10

Using RTXC Real Time OS on the M16C

1. ABSTRACT

The use of Real Time Operating Systems (RTOS) in
embedded systems has many advantages.  An
RTOS allows the developer to define a task as if it
had the microcontroller all to itself.  The RTOS
ensures that the tasks are isolated one from another.
This isolation between the defined tasks, protects
locally allocated task memory from being corrupted
by other tasks.  Other advantages for using an
RTOS are decreased development time, simplified
debugging, prioritizing of tasks, simplified system
software expansion, and ease of documentation.
This note contains information on the use of RTOS,
Embedded System Product’s RTXC, and IAR’s
Embedded Workbench on Mitsubishi’s M16C
Microcontroller.

2. INTRODUCTION TO RTOSS

RTOSs provide application-programming interfaces
to Kernel Services.  These services may include
functions for task control, semaphores, FIFO

queues, mailboxes, event flags, and memory
management.  The Tasks are what the system
designer creates to perform work.  The three states
of created and enabled task are waiting, ready, and
running.  Please see figure one.

A task that is suspended is placed into an indefinite
wait state.  A preempted task is placed back on to
the ready list.   The kernel may provide task control

functions for task creation, task deletion, task
suspension, and task starting.

Semaphores are used to control access to shared
resources, signal the occurrence of an event, and
allow two tasks to synchronize their activities.

FIFO (First In, First Out) Queues are circular buffers
that allow the system to pass data from one task to
another.   For example, serial ports use FIFOs to
pass data from the interrupt handler to the task that
processes the input information.

Mailboxes are used to pass message pointers from
one task to another.  The task that is sending the
pointer and the task that is receiving the pointer
decide the format of the data.   Passing pointers is
an efficient way of moving large blocks of data from
one task to another.

Event Flags are used to synchronize events from
different tasks.  For example a task that controls an
Analog to Digital converter could send an event flag
to the task that processes the stored digital data.
This allows the signaling task to continue controlling
the AD converter while a background task processes
the data.

Some RTOSs provide functions to manage memory.
These RTOSs allow a designer to dynamically
allocate blocks of memory to various tasks.    These
memory management functions allow a user to
allocate memory, create a task, let the task do the
work, delete the task, and then reclaim the memory
for use by other tasks.

For more information on RTOS please see Chapter
3 of Mitsubishi’s M16C/60 Series C Language
Programming Manual, and Embedded System
Product’s RTXC User’s Manual.

3. RTXC AND EMBEDDED WORKBENCH

TOOLS

Embedded Systems Product’s RTXC is a Real Time
Operating System that provides an Application
Programming Interface (API) to an extensive set of
Kernel Services.   These Kernel Services (KS)
include services for Task, Semaphores, Mailboxes,
Messages, Queues, Timer, and System Time.
RTXC supports Time-Sliced, Preemptive, and
Round Robin task scheduling algorithms.  RTXC
requires the use of IAR’s Embedded Workbench for
building the example program to run on Mitsubishi’s
M16C Microcontroller.

IAR’s Embedded Workbench provides editing,
project management, and make control for M16C

Running

Ready Waiting

A preempted task is
placed back into the
Ready list.

Figure 1: The three states of an enabled task.



 

Jun-99     Mitsubishi Electronics APN#2 of 10

embedded software projects.  The development
environment includes C and assembly language
compilers and a program linker.

4. THE RTXC_AD/LED EXAMPLE PROGRAM

This package includes an example program that
uses some of the RTXC services.    The program is
written to run on the Mitsubishi’s MSA0600 Starter
Kit or PC4701HS/PC4701L emulators with either the
M30610TRPD-E or M30620T-RPD-E pods.   The
program uses the MTK7704B I/O board’s 4 digit LED
display, keypad, analog input, and RS232 serial port.

Program Structure
Excluding the RTXC supplied support tasks the
RTXC_AD/LED example program consists of five
tasks and five functions. The five tasks are; Flash
LED, Monitor Push Buttons (keypad), ADLED
(Perform A/D or Calculate LED Display Value),
Update Display, and Echo Character.   Please see
figure 2, Example Program Structure Chart.

RTXC Main is called from the assembly language
file “C-startup.”   When RTXC Main is called, it
initializes all of the peripheral functions by calling
“Initial” before any of the kernel startup routines are

called.  After “Initial” is executed then each task is
initialized and placed on to the ready list.    After all
of the tasks are initialized, the kernel is then started.
The kernel gets the highest priority task off of the
ready list and executes it.  When the task calls
KS_delay (KS = Kernel Service) the kernel places

the task into the wait list, sets the task timer and
transfer CPU control to the next highest priority task.

Here’s how we divide up the tasks and decide
priority and timing.  The real time interrupt (RTI) fires
every 5 milliseconds.  For the example program,
Timer A0 is used to generate the RTI.  Any of the
available timers on the M16C can be used to
generate the RTI.    When RTI occurs, the kernel will
then take control of the CPU (M16C Core) and
process the interrupt.  During the processing of the
RTI, the kernel decrements all of the waiting task
timers.  All tasks whose timers decrement to 0 when
the kernel processes the RTI will be removed from
the waiting list and placed onto the ready list.   After
processing the RTI, the kernel will then pass the
CPU to the highest priority task that is listed on the
ready list.

Tasks that execute often usually have a lower
priority then tasks that seldom execute.  For
example, the Update Display task runs every 5
milliseconds.   To prevent blocking other tasks from
running, the Update Display has lower priority then
some of the other tasks.

But Update Display must meet its timing
requirements or the display will flicker. To prevent
the display from flickering, The Echo Character and
Monitor Push Buttons tasks have lower priorities
then the Update Display Task.   If the Monitor Push
Button task is running when the RTI occurs, the
kernel will preempt the Push Button Task and hand
the CPU over to the Update Display task.  One of
the main advantages in using RTOSs is the ability to
give control of the CPU to time critical processes.

Between the occurrences of the RTI, a task that
finishes executing its process and calls KS_delay is
placed onto the waiting list by the kernel.  Next, the
kernel will get the highest priority task off of the
ready list and transfer control of the CPU over to that
task.

For more information on the RTXC kernel, please
see the RTXC Users Guide.

Program Description
The example program is made of both user
application code files and RTXCgen generated code
files.  RTXCgen, a utility supplied with RTXC, is used
to create the configuration files needed to interface
the application code with the RTXC kernel.   Figure 3
lists the RTXCgen generated, application code, and
RTXC supplied files.

RTXC
Kernel

Flash Led
Monitor
Push

Buttons
ADLED

Update
Display

Echo
Character

KS delay

Bin to LED Do it

Convert
(AD)

RTXC Main

initial

Display

KS
dequeuew

KS lockw

KS unlock
KS

enqueuew

Called from CStartup.

RTXC API functions.

User defined tasks.

KS delay KS delay

KS delay

Bin to LED

User functions called from
user defined tasks.

Figure 2: Example Program Structure Chart



 

Jun-99     Mitsubishi Electronics APN#3 of 10

Figure 3: Example Program File List.

File Resource Color Codes

File
*.c – code
*.h – header
*.s34 - asm

C
O
D
E

Description
C*.c files are used by RTXC for kernel
initialization.  Include the C*.h header files in
your application files.

AD.C Application code file, contains all defined tasks
and functions.

AD.H Application code header file.
CClock RTI timer setup.
Clka0dr Clock driver for A0 Timer, used for RTI.
Cmbox Mailbox definition code.
Cpart Memory partition definition code.
Cqueue Queue definition.
Cres I/O resource definitions.
Csema Semaphore definitions.
Cstartup Startup file for system.
Ctask Task definition code.
Cvtdate  Date/time functions.
Format String handing routines.
Example Configuration files,  linker output.
Initvect Initiates vectors to “NO-OPS”.
Iom16c SFR Address for hardware configuration.
Isrs Interrupt handlers.
Printl Print functions.
RTXCbug Kernel debugger.
Rtxcmain System initialization and Kernel startup.
Sio0drv Uart 0 driver.
Uitoa Function for terminal support.
Ultoa Function for terminal support.

The example program has 5 tasks. AD.C contains
the application code written for this example.
Figure 4 table lists all of the tasks and functions
contained within AD.C.

Figure 4: Example program task/function descriptions table.

Tasks/Functi
on of AD.C

Task
Times(T) and
1Priorities (P)

Descriptions

Flash LED
(TASK)

T= 1000 ms

P = 4

This task is timed on 1 second
interval.  LED2 located on MSA0600
board is flashed on for 1 second
then off for 1 second.   Flashing an
LED on the system is a good
indication that the kernel is running.

ADLED
(TASK)

T = 500 or
100 ms

P = 5

Dependent on the state that is set
by the Monitor Push Buttons task,
this task will determine the Analog to
Digital value or count up.
Depending on the button pressed
the Analog to Digital resolution may
be 8 or 10 bits.  When sampling the
Analog to Digital value, this task
runs every 100 milliseconds.    The
value on the LED display will
increase by 1 every 500
milliseconds when the Count-Up
function is active.

Update
Display
(TASK)

T = 5 ms

P = 6

This task runs every 5 milliseconds
to display one digit on the
MTK7704B LED display.  The
display is updated 50 times a
second.

Monitor Push
Buttons
(TASK)

T = 50 ms

P = 7

Every 50 milliseconds this task
checks to see if ether SW1 and/or
SW2 button are pressed on the
MTK7704B I/O board.    The
function of the LED display is
changed based on the buttons
pushed.

Echo
Character
(TASK)

T = “Uses
Semaphore”

P = 8

This task runs every time that a
character is received on UART0
communications port.   A
semaphore triggers it.    The task
sends the received character to
UART0 transmit buffer.

Do It
(Function)

NA Called by ADLED task, this
functions just calls two other
functions.   The two functions are
Convert and BinToBCD.

Bin To BCD
(Function)

NA This function converts hexadecimal
value to Binary Coded Decimal.
The converted value is store in the
LED_digit array.

Convert
(Function)

NA This function when called by
ADLED performs an Analog to
Digital conversion using the onboard
AD converter of the M16C.

Display
(Function)

NA This function takes the values
stored in LED_digit array and
displays them on the MTK7704B
LED display.

Initial
(Function)

NA Called by RTXCmain, this function
initializes the hardware peripherals
of the M16C.

                                                  
1 The tasks provided in the RTXC distribution have higher priorities.

Application Code

RTXCgen generatted code

RTXC Supplied Code



 

Jun-99     Mitsubishi Electronics APN#4 of 10

5. INSTALLATION OF THE EXAMPLE PROGRAM

Before installing the example program, both RTXC
and Embedded Workbench must be installed per
manufacture’s requirements.   After installing
Embedded Workbench, modify the directory tree per
figure 3.

Building the Example Program

(RTXC_AD/LED)

To build the example program for the 10 MHz starter
kit, follow the instructions listed in section 4.3.1.  To
build the example programs for the 10 MHz emulator
pods use the instructions listed in section 4.3.2.  Use
section 4.3.3 to build the example program for the
16M Hz M16C/62 (M30620T-RPD-E) group
emulator.

Building  for 10M Hz Starter Kit (MSA0600 and
MTK7704B)

1. Start IAR’s Embedded Workbench.

2. On the Menu, click File then Open.

3. In the Open file box, change “Files of Type”
to “Project Files  (*.prj).”

4. Use the browse features of the Open box to
locate one of the installed projects.   Click OK
after choosing a project.

5. Open the RTXCAPI.H file and change the
#define variable SYS_CLOCK_TIME to 0.
Save and close RTXCAPI.H file.

6. Right click on Debug on the project window
and select OPTIONS.  With the Options for
Target Debug windows open, click on XLINK.
Click on the Include tab and change or verify
that “KBD30.XCL” is listed as the “XCL File
Name.”  Verify for each of the tools the
“Include” directories. Click OK.

7. On the Menu select Project then click on
“Build All.”

8. Use the KDB30 Debugger to load the
“example.x30” program to the Starter Kit.
See section 6 for instructions on running the
example program.

Building for 10 MHz M16C Emulator Pod.

Follow steps 1 through 7 of section 5.1. Change
or verify that “LNKM16C.XCL” is listed for “XCL
File Name.”  Use the PD30 Debugger to load the
“example.x30” file to the Emulator.

Building for the 16 MHz M16C.62 Group Emulator

Follow steps 1 through 7 as listed in section 5.1
with the following exceptions.

1. Change #define variable SYS_CLOCK_TIME
to 1.

2. Change or verify the LNKM16C.XCL is listed
for the “XCL File Name.”

Use the PD30 debugger to load the
“example.x30” file to the emulator.

Running the Example Program
To enable RTXC debug on the RTXC_AD/LED
demo, connect the Serial Communication port of the
MTK7704 I/O board to a PC running HyperTerminal.
Set HyperTerminal communications to 4800 Baud,
Data, 1 Stop Bit, and No Handshaking.  All
characters when typed at the HyperTerminal
keyboard will be echoed back.  Typing a “!” will stop

IAR

am16c

bin

cwm16c

etc

iccm16c

inc

lib

m16c

Root
Of

Drive

tutor

\\

Cw21.exe
Cwm16c.txt
DelsL1.isu
DelslL2.isu
Ew21.exe
evm16c.txt
Xlib.exe
Xlink.dll
Xlink.exe

Directories

Figure 5: IAR Revised Directory Tree



 

Jun-99     Mitsubishi Electronics APN#5 of 10

program execution and cause the system to enter
the RTXC debugger.

The RTXC_AD/LED program has several functions
dependent on which button is pressed on the
MTK7704B I/O board.  Pressing both SW1 and
SW54 at the same time will cause the LED display
to count up starting with 0.  Pressing SW1 will cause
the system to do a 10-bit A/D read.  Pressing SW4
will cause the system to do an 8-bit AD read.  The
system writes these AD values to the 4 digit LED
display.

6. SOURCE CODE

/*****************************************************************
*    Copyright,1997, 1998, 1999
*        Mitsubishi Semiconductor America, Inc.
*        MITSUBISHI ELECTRIC CORPORATION AND
*       MITSUBISHI ELECTRIC SEMICONDUCTOR SOFTWARE CORPORATION
*
******************************************************************
*    M16C 8/10 bit A/D converter program
*
*    This program demonstrates both 8 bit and 10 bit A/D
*    conversions using one shot mode and expanded analog input
*    pin ANEX1. The result of the A/D conversion is displayed on
*    a four digit LED display.
*    An 8 bit sample is taken whenever switch 4 is pressed and a
*    10 bit sample is taken whenever switch 1 is pressed.
*    The result is displayed on LED display and is updated every
*    1 ms.
*
*    written by D. Cocca
*    version 1.00
*
*     Modified for ESP's RTXC(Real Time OS in C)
*     By:    Bruce A. Embry
*     Version 2.00
*     Note:
*        This program was written for the M16C Starter Kit
*         (MSA0600 rev. D) and MTK7704B I/O board.
*
*******************************************************************/
/*    Prototype declarations  */
#include "c:\rtxc\sysopts.h"
#include "intrm16c.h"
#include "iom16c.h"
#include "rtxcapi.h"
#include "enable.h"
#include "periphal.h"
#include "typedef.h"
#include "rtxstruc.h"
#include "cclock.h"   /* CLKTICK  */
#include "cqueue.h"   /* SIO0OQ   */
#include "cres.h"     /* SIO0RES  */
#include "csema.h"    /* DEMOSEM0, DEMOSEM1 */

#include <stdio.h>
#include <math.h>



 

Jun-99     Mitsubishi Electronics APN#6 of 10

#ifdef KS_USER_INTERRUPT  /* { */
extern void isvcksuserint(void);
extern int ksuserintrpt(void *);
extern void setvect( unsigned long far *, unsigned short, unsigned long);
#endif  /* } KS_USER_INTERRUPT */

/**************************************************************************
*       Function : main()
*       program section
**************************************************************************/

#define AD_C
void adled(void);
void initial(void);
void doit(void);
void display(void);
unsigned int convert(void);
#include "ad.h"
void adled   (void);
void udisplay(void);
void BinToBCD(char *BCD_V, int value);
void echochar(void);

#define SELFTASK ((TASK)0)
/* data structures used by BinToBCD function. */
const char LED_data[10] = {0XC0,0XF9,0XA4,0XB0,0X99,
                    0X92,0X82,0XF8,0X80,0X98};    /* 0 - 9 */
const char LED[4] = {0xEF, 0xDF, 0xBF, 0x7F};

char TURN_LED_ON[4] = {0x01, 0x00, 0x00, 0x00};
char LED_digit[4];

#pragma ROM        LED_data
#pragma ROM        LED
int my_count=0;
char place;
char count, disp_digit;
char demo_state = 0;
#define COUNT_UP     0
#define READ_8BIT    1
#define READ_10BIT   2
int ad_value;        /* stored AD reading */

/*---------------------------------------------------------------------------------**
** Task: Flash LED **
** Task name: fla_led                   **
** Desc: Flashes Led #2 on MSA0600 **
** RTXC Servers Used: KS_delay    **
** Task Time 1000 ms **
**---------------------------------------------------------------------------------*/
ks_nosaveregs  void fla_led (void)
{
static int LED_STATE;
LED_STATE = 0;
while(1)
    {
    if(LED_STATE){
        LED_STATE = 0;
        p8_0 = 0x1;
        }
    else{
        LED_STATE = 1;
        p8_0 = 0x0;
        }
    KS_delay(SELFTASK,  1000 / CLKTICK);
    }
}



 

Jun-99     Mitsubishi Electronics APN#7 of 10

/*----------------------------------------------------------------------------------------**
** Task: Monitor Push Buttons                               **
**                                                                        **
** Task name: p_button                                                           **
**                                                                       **
** Desc: Monitors Switch 1 and 4 of the I/O board MTK7704B.                 **
** The state of the system is dependent on the sequance               **
** and buttons that are pressed.  If SW1 and SW4 are pushed           **
** at the same time, the system will count up.  If SW1 is             **
** depressed then the system will perform a 10-Bit anolog to digital  **
** conversion.  If SW4 is depressed, the system will perform          **
** continuous 8-Bit read.                                             **
**                                                                       **
** RTXC Services Used: KS_delay  **
** Task Time: 50 ms **
**----------------------------------------------------------------------------------------*/
ks_nosaveregs  void p_button(void)
{
    while (1)
    {
    if  ((p9_7 == 0)&(p9_0 == 0)){
            if(demo_state != COUNT_UP){
                my_count = 0;
                demo_state = COUNT_UP;
                }
            }
        else if (p9_7 == 0)      /*  test for switch 4 pressed */
           demo_state = READ_8BIT;
        else if (p9_0 == 0)      /*  test for switch 1 pressed */
           demo_state = READ_10BIT;
      KS_delay(SELFTASK,  50 / CLKTICK);
    }
}
/*----------------------------------------------------------------------------------------**
** Task: Analog to Digital and Calculate LED Display Value   **
**                                                                          **
** Task name: adled                                                     **
**                                                                  **
** Desc: Dependent on state task either perform a count up or analog to **
** digital conversion.    After performing one of functions, the task       **
** convert the value to BCD.  The BCD value is displayed by Update Display  **
** Task.                                                     **
**                                                                **
** RTXC Servers Used: KS_delay                                           **
** Task Time 500 ms or 100 ms (seee code. ) **
**----------------------------------------------------------------------------------------*/
void adled(void)
{
     my_count = 0;
    demo_state = COUNT_UP;
    while (1)
    {
        /* For this demo, we shell use RTXC timers to provide task control.  */
        switch(demo_state){

        case COUNT_UP:
            BinToBCD(&LED_digit[0], my_count);
            if(my_count++ > 3000)
                my_count=1;
            KS_delay(SELFTASK,  500 / CLKTICK);
            break;
        case READ_8BIT:
            bits = 0;      /*  8bit A/D*/
            doit();
            KS_delay(SELFTASK,  100 / CLKTICK);
            break;
        case READ_10BIT:
         default:
            bits = 1;      /*  10 bit A/D */
            doit();
            KS_delay(SELFTASK,  100 / CLKTICK);
            break;

           }
       }
}



 

Jun-99     Mitsubishi Electronics APN#8 of 10

/*----------------------------------------------------------------------------------------**
** Task: Update Display **
** Task name: udisplay **
** Desc: Calls display function. Display function writes BCD values **
** to the LED display of the MTK7704B I/O board.                  **
** RTXC Sevices Used: KS_delay  **
** Task Time 5 ms **
**----------------------------------------------------------------------------------------*/

void udisplay(void)
{
    while(1){
         KS_delay(SELFTASK,  5 / CLKTICK);
         display();
         }
}

/*----------------------------------------------------------------------------------------**
** Function: Do It **
**                                                                       **
** Func, name: doit                                                **
**                                                                         **
** Desc. Calls convert functin to perfrom Analog to Digital **
** conversion and then calls BinToBCD. BinToBCD converts **
** the AD value to BCD(Binary Coded Decimal).              **
**                                                                                  **
** Functions Called: convert  **
** BinToBCD                       **
**----------------------------------------------------------------------------------------*/
void doit(void)
{
 ad_value = convert();        /* do A/D conversion */
 BinToBCD(&LED_digit[0], ad_value);
}
/*----------------------------------------------------------------------------------------**
** Function: Binary To Binary Coded Decimal                   **
** Function name: BinToBCD                                         **
** Desc: Converts integer value to Binary Coded           **
** Decimal.                                            **
** Data Structures: const char LED_data[10] = {0XC0,0XF9,0XA4,0XB0,0X99, **
**                     0X92,0X82,0XF8,0X80,0X98};     0 - 9     **
** const char LED[4] = {0xEF, 0xDF, 0xBF, 0x7F};        **
**                                                                **
** char TURN_LED_ON[4] = {0x01, 0x00, 0x00, 0x00};      **
** const int POW_10[4]={1,10,100,1000};                 **
** TURN_LED_ON                                          **
** char LED_digit[4];                                   **
** LED_data                                             **
**----------------------------------------------------------------------------------------*/

void BinToBCD(char *BCD_V, int value)
{
char BOLLEAN_TEST;
int loop, Nloop, N_pow, Bin_value;
const int POW_10[4]={1,10,100,1000};
BOLLEAN_TEST = 1;
Bin_value = value;
 for( loop = 4; loop > 0; loop--) {
    Nloop = loop - 1;
    N_pow = POW_10[Nloop];
    *(BCD_V + Nloop) = Bin_value / N_pow;
    Bin_value = Bin_value %  N_pow;
    if(BOLLEAN_TEST){
        if (*(BCD_V + Nloop) == 0)
            TURN_LED_ON[Nloop] = 0;
        else {
            TURN_LED_ON[Nloop] = 1;
            BOLLEAN_TEST = 0;
            }
        }
    else
         TURN_LED_ON[Nloop] = 1;
    }
    TURN_LED_ON[0] = 1;

}



 

Jun-99     Mitsubishi Electronics APN#9 of 10

/*----------------------------------------------------------------------------------------**
** Function: Convert Analog to Digital                                **
** Function name: convert                                                  **
** Desc: Converts analog input from I/O board to disgital value. **
**----------------------------------------------------------------------------------------*/
unsigned int convert(void)
{
unsigned int ad_value;
    vcut = 1;            /*  connect Vref */
    adst = 1;            /* start conversion */
    do{
    }while (adst == 1);  /* wait til conversion done */
    ad_value = ad1;      /* store A/D value */
    vcut = 0;            /* disconnect Vref (save power) */
    return(ad_value);
}
/*----------------------------------------------------------------------------------------**
** Function: Display value to LED                               **
** Function name: display                                     **
** Desc: Takes value stored in LED_data array and displays it     **
** on the LED display of the I/O board. This is the companion **
** function to BinToBCD.                                      **
** Data Structures: TURN_LED_ON                                                  **
** LED_digit                                           **
** LED_data                                            **
** LED                        **
**----------------------------------------------------------------------------------------*/
void display()
{
    char i;

    p6 = 0xFF;            /* turn off LED display */
    ++place;                /* increment place flag */
    if (place >= 4)
        place = 0;
    if(TURN_LED_ON[place]){
        i = LED_digit[place];
        p7 = LED_data[i];
        p6 = LED[place];
        }
}
/*----------------------------------------------------------------------------------------**
** Function: Initialize Hardware                                    **
** Function name: initial                                            **
** Desc: Initializes hardware for Analog to Digital Conversion. **
** Function is called from RTXCmain.                          **
**----------------------------------------------------------------------------------------*/
void initial(void)
{
/*    Port initialization */
    pd6 = 0xf8;            /* output port
                           P64~P67 control LED digits 1~4 */
    pd7 = 0xff;            /* output port
                           P70~P77 drive 7 segment digit */
    pd8 = 0x00;            /* P8 input */
    pd8_0 = 0x1;           /* change p8_0 to output. */
    pd9 = 0x00;            /* P9 input port */
                        /* ANEX1 on P96 */
                        /* switch 4 on P97 */
/*    A/D initialization */
    adcon2 = 1;            /*sample & hold*/
    adcon0 = 1;            /*select ANEX1*/
/** 10 bit A/D conversions on ANEX are only +/- 7 lsb accurate **/
    adcon1 = 0x98;        /*fAD clk, 10 bit, one shot mode*/
}



 

Jun-99     Mitsubishi Electronics APN#10 of 10

/*----------------------------------------------------------------------------------------**
** Task: Echo Charactor                                     **
** Task name: echochar                                       **
** Desc.: Receives charactor from serial port and echos, and transmits **
** it back to the terminal device.                            **
** RTXC services used: KS_user, KS_dequeuew, KS_lockW, KS_enqueuew, KS_unlock **
**----------------------------------------------------------------------------------------*/
void echochar(void)
{
char *c;
#ifdef KS_USER_INTERRUPT  /* { */
   setvect( (unsigned long far *)INTB_ADDRESS, KSUSER_TRAPNUM, (unsigned long) isvcksuserint);
   KS_user(ksuserintrpt, (void *)0 );
#endif  /* } KS_USER_INTERRUPT */
 for(;;){
   KS_dequeuew(SIO0IQ,&c);
   KS_lockw(SIO0RES);
   KS_enqueuew(SIO0OQ,&c);
   KS_unlock(SIO0RES);
   }
}


